

West Windsor-Plainsboro Regional School District Science Curriculum Grade 5 - Energy and Matter in Ecosystems

The Mission of the West Windsor-Plainsboro Science Department

Our mission is to cultivate science learners who have the foundational knowledge to make ethical, scientifically literate decisions and the ability to apply scientific practices in order to contribute to the needs of society and a changing world.

• <u>Vision</u>

We envision a K-12 science experience that supports and challenges every student in their science learning journey. We will:

- Capitalize on diversity by reaching and exciting students at all levels and interests by differentiating learning within classrooms and by offering a robust program of studies.
- Emphasize authentic science and engineering practices and leverage the interdisciplinary nature of science with arts, technology, math, reading, and writing.
- Integrate scientific knowledge and 21st century competencies to prepare students to make informed decisions and take action to address real world problems.
- Cultivate an inclusive and diverse community where all learners are welcomed, valued, respected, and celebrated.

Unit: Energy and Matter in Ecosystems

Content Area: Science

Course & Grade Level: Science Grade 5

Summary and Rationale

In this unit, students develop an understanding of the idea that plants get the materials they need for growth chiefly from air and water. Using models, students can describe the movement of matter among plants, animals, decomposers, and the environment, and they can explain that energy in animals' food was once energy from the sun. Students will use engineering practices to propose a design for a life sustaining dome for nonterrestrial planetary expedition and evaluate proposed organisms for life survival.

Recommended Pacing

20 days

New Jersey Student Learning Standards for				
Standard:	Standard: 5-PS3: Energy			
CPI #	Cumulative Progress Indicator (CPI)			
5-PS3-1	Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.].			
PS3.D	Energy in Chemical Processes and Everyday Life The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water).			
Standard:	5-LS1: From Molecules to Organisms: Structures and Processes			
CPI #	Cumulative Progress Indicator (CPI)			
5-LS1-1	Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]			
LS1.C	Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.			
Standard:	5- LS2: Ecosystems: Interactions, Energy, and Dynamics			
CPI #	Cumulative Progress Indicator (CPI)			
5-LS2-1	Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]			
LS2.A	Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as "decomposers." Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem.			

162.0	Curles of Matter and Energy Transfer in Energy terms Matter surles between the sineral scilland		
LS2.B	Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the		
	environment.		
	New Jersey Student Learning Standards for English Language Arts		
	Companion Standards		
Standard: E	inglish Language Arts		
CPI #	Cumulative Progress Indicator (CPI)		
RI.5.1	Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text.		
RI.5.7	Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently.		
RI.5.9	Integrate and reflect on (e.g. practical knowledge, historical/cultural context, and background knowledge) information from several texts on the same topic in order to write or speak about the subject knowledgeably.		
W.5.1	Write opinion pieces on topics or texts, supporting a point of view with reasons and information.		
SL.5.5	Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.		
Ν	lew Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills		
CPI #	Cumulative Progress Indicator (CPI)		
9.4.5.Cl.1	Use appropriate communication technologies to collaborate with individuals with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions		
9.4.5.Cl.2	Investigate a persistent local or global issue, such as climate change, and collaborate with individuals with diverse perspectives to improve upon current actions designed to address the issue		
9.4.5.Cl.3:	Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity		
9.4.5.CT.1	Identify and gather relevant data that will aid in the problem-solving process		
9.4.5.IML. 2	Create a visual representation to organize information about a problem or issue		
	New Jersey Student Learning Standards for Technology		
CPI #	Cumulative Progress Indicator (CPI)		
9.4.5.TL.2	Sort and filter data in a spreadsheet to analyze findings.		
Mathematic	Interdisciplinary Standards		
Mathemati			
MP.2	Reason abstractly and quantitatively.		
MP.4	Model with mathematics.		
MP.5	Use appropriate tools strategically.		
5.MD.A.1	Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.		
	Instructional Focus		
	ng Understandings		
	nts get the materials they need for growth chiefly from air and water. nts use energy from the sun to start the movement of energy and matter in an ecosystem.		

- Matter moves among plants, animals, decomposers, and the environment.
- Producers, consumers, and decomposers interact in food chains, which make up food webs.
- Energy in animals' food was once energy from the sun.

Unit Essential Questions

- Where do organisms get the energy they need for living?
- How do organisms use energy that originally comes from the sun?
- How can I show cycles of matter in an ecosystem?

Objectives

Students will know:

- Plants get the materials needed for growth and reproduction through air, water and energy from the sun.
- Matter moves among plants, animals, decomposers, and the environment to create food webs and chains.
- Matter moves through an ecosystem when organisms interact with each other and the environment.
- The energy in an animal's food was once energy from the sun.

Students will be able to:

- Support an argument with evidence that plants get the materials they need for growth and reproduction chiefly through a process in which they use air, water, and energy from the sun to produce sugars and plant materials.
- Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
- Students will use a model to describe how interactions between each part of an ecosystem contribute to the movement of matter through the whole system.
- Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Evidence of Learning

Assessment

- Claims, evidence, and reason statements
- Pre and Post Assessment data
- Observational notes
- Graphs, charts, and data

Resources

Core Texts:

- Hydroponics Video
- <u>Ecosystem in a Bottle</u> (Daily Mail)
- <u>Who eats what? Food Chains and Food Webs</u> by P. Lauber
- <u>Composting Ideas for Children</u>
- <u>National Geographic Kids Composting</u>
- <u>Trout are Made of Trees</u> by April Pulley Sayre
- Finding Fresh Foods in Poor Neighborhoods is Challenging (NEWSELA)
- Supermarkets Have the Ability to Revive Low-income Neighborhoods (NEWSELA)
- Half of All Food Produce is Thrown Away (NEWSELA)
- U.N. Says Climate Change is Affecting the Cost and Availability of Food (NEWSELA)

Lesson 1: Plant Growth

Grade/ Grade Band: 5th grade	Topic: Energy and Matter in	Lesson #1 in a series of
Glade, Glade Balld. Stil glade	Ecosystem	4 lessons

Brief Lesson Description : In this lesson, students will design and conduct an experiment to discover the materials plants need to survive. Students will record the growth of plants over a 2-3 week period to understand if/how plants can survive under different conditions.				
• • •	 Support an argument with evidence t 	bat plants got the materials they		
	iefly through a process in which they us	se air, water, and energy from the		
sun to produce sugars and plant mate	eriais .			
Specific Learning Outcomes:				
	hat material is most important for plant	-		
	vestigation to determine which materia	al is most important to plant		
growth.				
Narrative / Background Information				
Prior Student Knowledge:				
-	at plants have roots, stems, leaves, flow	vers and fruits that are used to take		
in nutrients, water, and air, produce f				
	animals and plants have internal and ex	sternal structures that support their		
survival, growth, behavior, and repro		the structures that support them		
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:		
Asking Questions (science) and		Patterns		
defining problems	LS1.C: Organization for Matter and	Cause and effect: Mechanism		
(engineering).	Energy Flow in Organisms	and explanation		
 Developing and using models. 	 Food provides animals 	Scale, proportion, and quantity		
 Planning and carrying out 	with the materials they	 Systems and system models 		
investigations.	need for body repair	 Energy and matter: Flows, 		
Analyzing and interpreting data.	and growth and the	cycles, and conservation		
 Using mathematics and 	energy they need to	Structure and function		
computational thinking.	maintain body warmth	Stability and change		
 Constructing explanations 	and for motion.			
(science) and designing	(secondary to 5-PS3-1)			
solutions (engineering).	 Plants acquire their 			
Engaging in argument from	material for growth			
evidence.	chiefly from air and			
Obtaining, evaluating, and	water. (5-LS1-1)			
communicating information.	LS2.A: Interdependent			
	Relationships in Ecosystems			
	 The food of almost any 			
	kind of animal can be			
	traced back to plants.			
	Organisms are related			
	in food webs in which			
	some animals eat plants			
	for food and other			
	animals eat the animals			
	that eat plants. Some			
	organisms, such as fungi			
	and bacteria, break			
	down dead organisms			
	(both plants or plants			
	parts and animals) and			

therefore operate as	
"decomposers."	
Decomposition	
eventually restores	
(recycles) some	
materials back to the	
soil. Organisms can	
survive only in	
environments in which	
their particular needs	
are met. A healthy	
ecosystem is one in	
which multiple species	
of different types are	
each able to meet their	
needs in a relatively	
stable web of life.	
Newly introduced	
species can damage the	
balance of an	
ecosystem. (5-LS2-1)	
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	
Matter cycles between	
the air and soil and	
among plants, animals,	
and microbes as these	
organisms live and die.	
Organisms obtain gases,	
and water, from the	
environment, and	
release waste matter	
(gas, liquid, or solid)	
back into the	
environment. (5-LS2-1 <u>)</u>	

Possible Preconceptions/Misconceptions:

- Students may assume that plants get their materials from soil. They may have difficulty grasping the concept that the matter needed to survive and grow comes from water and air.
- Students may not perceive sunlight to be energy, and assume that the plant's energy is generated internally or assume that dirt provides energy to the plant in the form of calories

LESSON PLAN – 5-E Model

Lesson 2: Flow of Matter

Grade/ Grade Band: 5th Grade	Topic: Energy and Matter in	Lesson # <u>2</u> in a series of4
Glade, Glade Balld. Stil Glade	Ecosystems	lessons

 Brief Lesson Description: This lesson is designed to introduce students to the flow of matter in an ecosystem. They will understand what components are needed within an ecosystem. Through this understanding, students will be challenged with thinking about what matter would be needed in an ecosystem to support human life on a mission to Mars. Performance Expectation(s): 5-LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and Earth.] [Assessment Boundary: Assessment does not include molecular explanations.] Specific Learning Outcomes: 				
	ation from the readings and videos abo	out the interactions among living		
and nonliving things in an ec Students will use a model to 	o describe how interactions between ea	ach nart of an ecosystem contribute		
to the movement of matter		ach part of an ecosystem contribute		
Narrative / Background Information	· ·			
Prior Student Knowledge:				
 Matter is the "stuff" that mal Matter is conserved, meaning destroyed. Models are representations up 	g that it can change state or composition used to describe real-world phenomenon	on.		
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:		
 Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as "decomposers." Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem.	 Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change 		

	cycles between the air and soil and	
	among plants, animals, and	
	microbes as these organisms live	
	and die. Organisms obtain gases	
	and water, from the environment,	
	and release waste matter (gas,	
	liquid, or solid) back into the	
	environment.	
Possible Preconceptions/Misconceptions:		
• •		

- 1. When plants and animals die their matter disappears.
- 2. Humans can eliminate or remove apex predators with no harm to an ecosystem.
- 3. Mars is currently habitable.

LESSON PLAN – 5-E Model

Lesson 3: Decomposers

	Lesson 3: Decomposers				
Grade/ Grade Band: 5	Topic: Energy and Matter in	Lesson #3 in a series of			
	Ecosystems	4 lessons			
Brief Lesson Description: In this lesso	on, students discover the role fungi play	y in decomposing dead materials			
and in creating soil. In the activity, M	old Terrarium, students plan and condu	ict an investigation to discover the			
factors affecting decomposition. Stuc	lents fill Ziploc bags with different type	s of foods and change			
environmental conditions to study ho	ow different variables affect mold grow	th. They then observe mold growth			
over a period of two weeks.					
Materials needed: Loaf of bread, sal	t and/or sugar, and ziploc bags.				
Performance Expectation(s):					
-	e the movement of matter among plar	· · · · · ·			
-	t: Emphasis is on the idea that matter t	hat is not food (air, water,			
decomposed					
materials in soil) is changed by plants	s into matter that is food. Examples of s	ystems could include			
o	n.] [Assessment Boundary: Assessment	does not include molecular			
explanations.]					
Specific Learning Outcomes:					
	describe how interactions between ea	ach part of an ecosystem contribute			
to the movement of matter	through the whole system.				
Narrative / Background Information					
Prior Student Knowledge:					
 Students may know that spo 	piled or rotten food will grow mold.				
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:			
Asking Questions (science) and	LS1.C: Organization for Matter and	Patterns			
	defining problems Energy Flow in Organisms				
(engineering).		and explanation			
Developing and using models.	Plants acquire their material for	Scale, proportion, and quantity			
Planning and carrying out	growth chiefly from air and water.	Systems and system models			
investigations.	(5-LS1-1)	Energy and matter: Flows,			
Analyzing and interpreting data.	LS2.A: Interdependent Relationships	cycles, and conservation			
Using mathematics and	in Ecosystems	Structure and function			
West Windsor-Plainsboro RSD					

	Ì.	_	
computational thinking.	The food of almost any kind of		Stability and change
Constructing explanations	animal can be traced back to plants.		
(science) and designing	Organisms are related in food webs		
solutions (engineering).	in which some animals eat plants		
Engaging in argument from	for food and other animals eat the		
evidence.	animals that eat plants. Some		
Obtaining, evaluating, and	organisms, such as fungi and		
communicating information.	bacteria, break down dead		
	organisms (both plants or plants		
	parts and animals) and therefore		
	operate as "decomposers."		
	Decomposition eventually restores		
	(recycles) some materials back to		
	the soil. Organisms can survive only		
	in environments in which their		
	particular needs are met. A healthy		
	ecosystem is one in which multiple		
	species of different types are each		
	able to meet their needs in a		
	relatively stable web of life. Newly		
	introduced species can damage the		
	balance of an ecosystem. (5-LS2-1)		
	LS2.B: Cycles of Matter and Energy		
	Transfer in Ecosystems		
	Matter cycles between the air and		
	soil and among plants, animals, and		
	microbes as these organisms live		
	and die. Organisms obtain gases,		
	and water, from the environment,		
	and release waste matter (gas,		
	liquid, or solid) back into the		
	environment. (5-LS2-1)		
	PS3.D: Energy in Chemical Processes		
	and Everyday Life		
	The energy released [from] food		
	was once energy from the sun that		
	was captured by plants in the		
	chemical process that forms plant		
	matter (from air and water).		
	(5-PS3-1)		
	· · · · ·		
	LS1.C: Organization for Matter and		
	Energy Flow in Organisms		
	Food provides animals with the		
	materials they need for body repair		
	and growth and the energy they		
	need to maintain body warmth and		
	for motion. (secondary to 5-PS3-1)		

Possible Preconceptions/Misconceptions:				
 Students may assume that m 	atter disintegrates on its own.			
LESSON PLAN – 5-E Model				

Lesson 4: Energy from the Sun

	Lesson 4. Energy nom the Sun				
Grade/ Grade Band: 5	Topic: Energy and Matter in Ecosystems	Lesson #4 in a series of 4 lessons			
Brief Lesson Description: Students will play a game which teaches the transfer of energy from the sun					
throughout an ecosystem.					
Performance Expectation(s): Use mo	dels to describe that energy in animals	' food (used for body repair, growth,			
motion, and to maintain body warmt	h) was once energy from the sun.				
Specific Learning Outcomes: Student	s will play a food chain game to determ	nine how energy from the sun is			
transferred through an ecosystem.					
Narrative / Background Information					
Prior Student Knowledge:					
Kindergarten Unit 4: Basic Needs of L	iving Things				
All animals need food in orde	er to live and grow. They obtain their foo	od from plants or from other			
animals. Plants need water a					
Grade 2: Relationships in Habitats					
Plants depend on water and	light to grow.				
 Plants depend on animals for 	pollination or to move their seeds arout	und.			
Grade 4: Weathering and Erosion					
 Living things affect the physic 	cal characteristics of their regions.				
Grade 4 Unit 5: Transfer of Energy					
 Energy is present whenever t 	here are moving objects, sound, light, o	or heat. When objects collide,			
energy can be transferred fro	om one object to another, thereby chan	ging their motion. In such collisions,			
some energy is typically also	transferred to the surrounding air; as a	result, the air gets heated and			
sound is produced.)					
 Light also transfers energy from 	om place to place.				
 Energy can be moved from p 	lace to place by moving objects or thro	ugh sound, light, or electric			
currents.					
Grade 4 Unit 6: Forces and Motion					
	 The faster a given object is moving, the more energy it possesses. 				
	here are moving objects, sound, light, o	-			
	om one object to another, thereby chan				
	transferred to the surrounding air; as a	result, the air gets heated and			
sound is produced.)					
	Grade 4 Unit 7: Using Engineering Design with Force and Motion Systems				
 The expression "produce energy" typically refers to the conversion of stored energy into a desired form 					
for practical use.					
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:			
Asking Questions (science) and	LS1.C: Organization for Matter and	Patterns			
defining problems	Energy Flow in Organisms	Cause and effect: Mechanism			
(engineering).		and explanation			
Developing and using models.	Plants acquire their material for	Scale, proportion, and quantity			
Planning and carrying out	growth chiefly from air and water.	Systems and system models			
	(5-LS1-1)				

investigations.

- □ Analyzing and interpreting data.
- Using mathematics and computational thinking.
- Constructing explanations (science) and designing solutions (engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

LS2.A: Interdependent Relationships in Ecosystems

The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as "decomposers." Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. (5-LS2-1)

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)

<u>PS3.D: Energy in Chemical Processes</u> and Everyday Life

The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1)

<u>LS1.C: Organization for Matter and Energy Flow in Organisms</u>

Food provides animals with the materials they need for body repair and growth and the energy they Energy and matter: Flows, cycles, and conservation

- □ Structure and function
- Stability and change

|--|

Possible Preconceptions/Misconceptions:

Students can understand simple food links involving two organisms. Yet they often think of organisms as independent of each other but dependent on people to supply them with food and shelter. Upper elementary-school students may not believe food is a scarce resource in ecosystems, thinking that organisms can change their food at will according to the availability of particular sources. Students of all ages think that some populations of organisms are numerous in order to fulfill a demand for food by another population.

Some students have difficulty in identifying the sources of energy for plants and also for animals. Students tend to confuse energy and other concepts such as food, force, and temperature. As a result, students may not appreciate the uniqueness and importance of energy conversion processes like respiration and photosynthesis.

Many students see food as substances (water, air, minerals, etc.) that organisms take in directly from their environment. In addition, some students think food is a requirement for growth, rather than a source of matter for growth. They have little knowledge about food being transformed and made part of a growing organism's body. They often think the arrows in a food web represent something being eaten when the arrows represent energy being transferred.

Students' meaning for "energy," both before and after traditional instruction, is considerably different from its scientific meaning. In particular, students believe energy is associated only with humans or movement, is a fuel-like quantity which is used up, or is something that makes things happen and is expended in the process. Students rarely think energy is measurable and quantifiable. Although students typically hold these meanings for energy at all ages, upper elementary-school students tend to associate energy only with living things, in particular with growing, fitness, exercise, and food.

LESSON PLAN – 5-E Model

West Windsor-Plainsboro Regional School District Science Curriculum Grade 5 – Interactions: Earth, Sun, and Moon

The Mission of the West Windsor-Plainsboro Science Department

Our mission is to cultivate science learners who have the foundational knowledge to make ethical, scientifically literate decisions and the ability to apply scientific practices in order to contribute to the needs of society and a changing world.

• <u>Vision</u>

We envision a K-12 science experience that supports and challenges every student in their science learning journey. We will:

- Capitalize on diversity by reaching and exciting students at all levels and interests by differentiating learning within classrooms and by offering a robust program of studies.
- Emphasize authentic science and engineering practices and leverage the interdisciplinary nature of science with arts, technology, math, reading, and writing.
- Integrate scientific knowledge and 21st century competencies to prepare students to make informed decisions and take action to address real world problems.
- Cultivate an inclusive and diverse community where all learners are welcomed, valued, respected, and celebrated.

Unit: Interaction of Earth, Sun, and Moon

Content Area: Science

Course & Grade Level: Science Grade 5

Summary and Rationale

Earth has a unique relationship between the Sun and its natural satellite the moon. The Sun, Earth, and Moon interact in a delicate balance of motions and force. The moon has a predictable 30-day orbit that is observable through the visible moon phases. The Earth orbits around the Sun every 365.25 days or 1 Earth year. This happens as a result of the gravitational attraction between these three bodies with mass. The Earth's gravitational pull on the Moon keeps the Moon in orbit and the Sun's pull on the Earth keeps the Earth in Orbit. Furthermore, students will develop an understanding that our Sun is the brightest object in the day sky due to its relative closeness to the Earth.

This interaction in the Sun-Earth-System allows for observable seasons, tides, moon phases, eclipses, and patterns in the observable night-time sky. Students will be able to examine these observable patterns and gather data to demonstrate these patterns. Students will be able to use gathered data to make predictions about star locations, seasons, and tides.

Recommended Pacing

Recommended Pacing			
15 days			
	New Jersey Student Learning Standards for		
Standard:	5-ESS1: Earth's Place in the Universe		
CPI #	Cumulative Progress Indicator (CPI)		
5-ESS1-1	Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]		
5-ESS1-2	Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]		
Standard: 5-PS2: Motion and Stability: Forces and Interactions			
CPI # Cumulative Progress Indicator (CPI)			
5-PS2-1	Support an argument that the gravitational force exerted by Earth on objects is directed down. [Clarification Statement: "Down" is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]		
Standard: 5-ESS3: Earth and Human Activity			
CPI #	Cumulative Progress Indicator (CPI)		
5-ESS3-1	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.		
	New Jersey Student Learning Standards for English Language Arts Companion Standards		
Standard: I	English Language Arts		

CPI #	Cumulative Progress Indicator (CPI)			
RI.5.1	Quote accurately from a text and make relevant connections when explaining what the text says explicitly and when drawing inferences from the text.			
RI.5.7	Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently.			
RI.5.8	Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s).			
RI.5.9	Integrate and reflect on (e.g. practical knowledge, historical/cultural context, and background knowledge) information from several texts on the same topic in order to write or speak about the subject knowledgeably.			
W.5.1	Write opinion pieces on topics or texts, supporting a point of view with reasons and information.			
SL.5.5	Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.			
N	ew Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills			
CPI #	Cumulative Progress Indicator (CPI)			
9.4.5.Cl.1	Use appropriate communication technologies to collaborate with individuals with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions			
9.4.5.Cl.2	Investigate a persistent local or global issue, such as climate change, and collaborate with individuals with diverse perspectives to improve upon current actions designed to address the issue			
9.4.5.Cl.3:	Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity			
9.4.5.CT.1	Identify and gather relevant data that will aid in the problem-solving process			
9.4.5.IML. 2	Create a visual representation to organize information about a problem or issue			
New Jersey Student Learning Standards for Technology				
CPI #	Cumulative Progress Indicator (CPI)			
9.4.5.TL.2	Sort and filter data in a spreadsheet to analyze findings.			
Interdisciplinary Standards				
Mathematic	CS			
MP.2	Reason abstractly and quantitatively.			
MP.4	Model with mathematics.			
5.NBT.A.2	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.			
5.G.A.2	Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.			
Instructional Focus				
Unit Enduri	ng Understandings			
• The	Sun is the brightest object (star) in our sky due to its relative distance from the Earth.			
• The	interaction between the Sun-Earth-Moon system creates predictable patterns in the length and			
	ction of shadows, day and night, and the seasonal appearance of some stars in the night sky.			
	h's gravitational force on an object appears to be directed downward.			
	al Questions			
	ch of the brightest stars is actually the brightest? Why is the sun the brightest object in Earth's sky? / do shadows on Earth change direction and length?			

• Is the Earth Flat or Spherical?

Objectives

Students will know:

- The relative distance of our sun compared to other stars in the night sky.
- The sun and other stars are natural bodies in the sky that give off their own light.
- The apparent brightness of a variety of stars, including the sun.
- A luminous object close to a person appears much brighter and larger than a similar object that is very far away from a person.
- The length and direction of shadows observed several times during one day.
- The duration of daylight throughout the year, as determined by sunrise and sunset times.
- Presence or absence of selected stars and/or groups of stars that are visible in the night sky at different times of the year.
- Multiple lines of evidence that indicate that the Earth's shape is spherical.
- That objects dropped appear to fall straight down.
- That people live all around the spherical Earth, and they all observe that objects appear to fall straight down.

Students will be able to:

- Support an argument about the difference in the apparent brightness of the sun compared to other stars due to their relative distances from the Earth.
- Represent data in graphical displays to reveal patterns of daily changes in the length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
- Support an argument that the gravitational force exerted by Earth on objects is directed down.

Evidence of Learning

Assessment

- Claims, evidence, and reason statements
- Pre and Post Assessment data
- Observational notes
- Graphs, charts, and data

Resources

Core Text:

- Exploring Constellations Sara Latta
- Gravity Jason Chin

Lesson 1: Relative Distance from the Sun

Grade/ Grade Band: 5th Grade	Topic: Interactions within the Earth Moon system	I, Sun, and Lesson # <u>1</u> in a series <u>5</u> lessons
Brief Lesson Description: This lessor brightness of the sun and other celes	-	
-	he Earth [Assessment Boundary: Ass	essment is limited to relative hat affect apparent brightness (such stars affects the apparent brightne
Narrative / Background Information Prior Student Knowledge:		
• The Earth receives the major	ity of its light from our sun. " in the night sky than others (may k	now the big dipper or north star)
 Science & Engineering Practices: Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	Disciplinary Core Ideas: ESS1.A: The Universe and Its Stars • The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)	 Crosscutting Concepts: Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quant Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change
 Possible Preconceptions/Misconcep The sun and the moon are th The sun is brighter because i Suns and Stars are different of 	ne same size	nall

Lesson 2: Constellations

Grade/ Grade Band: 5	Topic: Interactions Within the Earth, Sun, and Moon System	Lesson #2 in a series of5 lessons

Brief Lesson Description: Students will participate in a modified mystery science activity. In this activity, students will explore what constellations can be seen at different types of the year.

Performance Expectation(s): Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

[Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.] (5-ESS1-2)

Specific Learning Outcomes: Students will create a universe in a box to reveal seasonal patterns in constellations.

Narrative / Background Information

Prior Student Knowledge:

Grade 1 Unit 1: Patterns of Change in the Sky

- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.
- Seasonal patterns of sunrise and sunset can be observed, described, and predicted.

Grade 3 Unit 2: Forces and Motion

- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.)
- The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)

Grade 3 Unit 3: Electrical and Magnetic Forces

- Objects in contact exert forces on each other.
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices:		Disciplinary Core Ideas:	osscutting Concepts:
	Asking Questions (science) and	ESS1.A: The Universe and its Stars	Patterns
	defining problems	The sun is a star that appears larger	Cause and effect: Mechanism
	(engineering).	and brighter than other stars	and explanation
	Developing and using models.	because it is closer. Stars range	Scale, proportion, and quantity
	Planning and carrying out	greatly in their distance from Earth.	Systems and system models
	investigations.	<mark>(5-ESS1-1)</mark>	Energy and matter: Flows,
	Analyzing and interpreting data.		cycles, and conservation
	Using mathematics and	ESS1.B: Earth and the Solar System	Structure and function
	computational thinking.	The orbits of Earth around the sun	Stability and change
	Constructing explanations	and of the moon around Earth,	
	(science) and designing	together with the rotation of Earth	
	solutions (engineering).	about an axis between its North and	
	Engaging in argument from	South poles, cause observable	
	<mark>evidence.</mark>	patterns. These include day and	
	Obtaining, evaluating, and	night; daily changes in the length	
	communicating information.	and direction of shadows; and	

	different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)			
Possible Preconceptions/Misconceptions:				
 The ideas "the sun is a star" and "the earth orbits the sun" appear counterintuitive to elementary school students. The ideas "the sun is a star" and "the earth orbits the sun" are challenging for students. 				

LESSON PLAN – 5-E Model

Lesson 3: Shadows

Lesson 5: Shadows				
Grade/ Grade Band: 5	Topic: Interactions Within the Earth,	Lesson #3	_ in a series of	
	Sun, and Moon System	5 lessons		
•	ill be introduced to a phenomenon of a			
	enomenon and use graphs to identify o			
	ent data in graphical displays to reveal p		0 0	
	ght, and the seasonal appearance of sor			
	patterns could include the position and			
	only in particular months.] [Assessmen	t Boundary: Asse	essment does not	
include causes of seasons.] (5-ESS1-2)				
-	s will graph how shadows change over		ating the location	
	adows, and the direction of shadows	over time.		
Narrative / Background Information				
Prior Student Knowledge:				
Grade 1 Unit 1: Patterns of Change in	<u>the Sky</u>			
 Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted Seasonal patterns of sunrise and sunset can be observed, described, and predicted. 			bed, and predicted.	
Grade 3 Unit 2: Forces and Motion				
 Each force acts on one particular object and has both strength and a direction. An object at rest typicall has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the 			ces that do not y: Qualitative and ed; when that past Technical terms,	
concept that some quantities need both size and direction to be described is developed.) Grade 3 Unit 3: Electrical and Magnetic Forces				
 Objects in contact exert force Electric and magnetic forces by 	s on each other. Detween a pair of objects do not requir	a that the objects	he in contact. The	

 Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:
 Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	 ESS1.A: The Universe and its Stars The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1) ESS1.B: Earth and the Solar System The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)	 Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change

Possible Preconceptions/Misconceptions:

Explanations of the day-night cycle and the seasons are very challenging for students. To understand these phenomena, students should first master the idea of a spherical earth. Students often confuse revolution and reflection and this may influence their ability to understand day and night, the change in length and direction of shadows during the day, the apparent motion of the sun across the daytime sky and the moon across the nighttime sky, and the seasonal changes in the position of the stars in the night sky. Finally, students may not be able to understand explanations of these phenomena before they reasonably understand the relative size, motion, and distance of the sun, moon, and the earth.

LESSON PLAN – 5-E Model

Lesson 4: Day and Night

Grade/ Grade Band: 5	Topic: Interactions Within the Earth,	Lesson #4 in a series of		
Grader Grade Danu. 5	Sun, and Moon System	5 lessons		
Brief Lesson Description: Students	will work in partnerships to create a gra	ph of the length of day in their		
assigned city over the course of a year	ar. Students will then analyze their grapl	ns to reveal patterns about the		
length of daylight over time and the	change of seasons.			
Performance Expectation(s): Represent data in graphical displays to reveal patterns of daily changes in length				
and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.				
[Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the				
sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not				
include causes of seasons. / (5-ESS1-2)				
Specific Learning Outcomes:				
 Students will collect and graph data to reveal patterns of changes in length of day and night over time 				

Narrative / Background Information

Prior Student Knowledge:

Grade 1 Unit 1: Patterns of Change in the Sky

- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.
- Seasonal patterns of sunrise and sunset can be observed, described, and predicted.

Grade 3 Unit 2: Forces and Motion

- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.)
- The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)

Grade 3 Unit 3: Electrical and Magnetic Forces

- Objects in contact exert forces on each other.
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:
Asking Questions (science) and defining problems (engineering).	ESS1.A: The Universe and its Stars The sun is a star that appears larger and brighter than other stars	 Patterns Cause and effect: Mechanism and explanation
 Developing and using models. Planning and carrying out investigations. 	because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)	 Scale, proportion, and quantity Systems and system models Energy and matter: Flows,
Analyzing and interpreting data.	FCC4 D. Fauth and the Calay System	cycles, and conservation
 Using mathematics and computational thinking. Constructing explanations (science) and designing 	ESS1.B: Earth and the Solar System The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth	 Structure and function Stability and change
 solutions (engineering). Engaging in argument from evidence. 	about an axis between its North and South poles, cause observable patterns. These include day and	
Obtaining, evaluating, and communicating information.	night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)	

- The ideas "the sun is a star" and "the earth orbits the sun" appear counterintuitive to elementary school students.
- The ideas "the sun is a star" and "the earth orbits the sun" are challenging for students.

LESSON PLAN – 5-E Model

Lesson 5: Gravity

Grade/ Grade Band: 5	Topic: Interactions Within the	Lesson # _5 in a series of		
Siddey Sidde Balla. 5	Earth, Sun, and Moon System	5 lessons		
-	son, students will design and test "whirl cts of surface area, wind resistance, and			
distinguish these features as separa				
	ort an argument that the gravitational fo	orce exerted by Earth on objects is		
	nent: "Down" is a local description of the			
	ssment Boundary: Assessment does not	· · · · · · · · · · · · · · · · · · ·		
representation of gravitational force	•			
Specific Learning Outcomes:				
	pjects that will fall slowly when droppe	d		
	lationship between gravity, air, and sur			
	nent describing gravity as a constant, d			
objects				
Narrative / Background Informatio	n			
Prior Student Knowledge:				
•				
Grade 1 Unit 1: Patterns of Change	in the Sky			
• Patterns of the motion of the s	un, moon, and stars in the sky can be ob	served, described, and predicted.		
· Seasonal patterns of sunrise an	d sunset can be observed, described, an	d predicted.		

Grade 3 Unit 2: Forces and Motion

• Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.)

• The patterns of an object's motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)

Grade 3 Unit 3: Electrical and Magnetic Forces

• Objects in contact exert forces on each other.

Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices: Engaging in Argument from	Disciplinary Core Ideas:	Crosscutting Concepts:
Evidence	PS2.B: Types of Interactions	Cause and Effect
Engaging in argument from	 The gravitational force 	 <u>Cause and effect</u>
evidence in 3–5 builds on K–2	of Earth acting on an	relationships are
experiences and progresses to	object near Earth's	routinely identified
critiquing the scientific	surface pulls that object	and used to explain
explanations or solutions proposed	toward the planet's	change.
by peers by citing relevant		

evidence about the natural and designed world(s).	center.	
 Support an argument with evidence, data, or a model. 		

Possible Preconceptions/Misconceptions:

- Students may assume that gravity is "stronger" for heavy items than for light items
- Students may assume that objects will always fall in the same way, regardless of wind/air resistance
- Students may assume that the rate of gravity changes with slight changes to height (gravity is different at the top of a building vs. at street level)
- Students may assume that gravity is fundamentally different on the moon than it is on Earth

LESSON PLAN – 5-E Model

West Windsor-Plainsboro Regional School District Science Curriculum Grade 5 - Properties and Changes to Matter

The Mission of the West Windsor-Plainsboro Science Department

Our mission is to cultivate science learners who have the foundational knowledge to make ethical, scientifically literate decisions and the ability to apply scientific practices in order to contribute to the needs of society and a changing world.

• <u>Vision</u>

We envision a K-12 science experience that supports and challenges every student in their science learning journey. We will:

- Capitalize on diversity by reaching and exciting students at all levels and interests by differentiating learning within classrooms and by offering a robust program of studies.
- Emphasize authentic science and engineering practices and leverage the interdisciplinary nature of science with arts, technology, math, reading, and writing.
- Integrate scientific knowledge and 21st century competencies to prepare students to make informed decisions and take action to address real world problems.

Properties of Matter and Changes to Matter

Content Area: Elementary Science NGSS Grade Five - Unit 2: Properties of Matter and Changes to Matter **Course & Grade Level:**

Summary and Rationale

If I have a frozen water bottle that weighs 500 mg, how much will it weigh if the water melts?

In this unit of study, students develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is conserved. Students determine whether the mixing of two or more substances results in new substances. The crosscutting concepts of *cause and effect* and *scale, proportion, and quantity* are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in *planning and carrying out investigations* and *using mathematics and computational thinking*. Students are expected to use these practices to demonstrate understanding of the core ideas.

This unit is based on 5-PS1-4 and 5-PS1-2.

	Recommended Pacing	
15 days	15 days	
	New Jersey Student Learning Standards for Science	
Standard: St	andards for Student Learning Objectives (Properties of Matter and Changes to Matter)	
CPI #	Cumulative Progress Indicator (CPI)	
<u>5-PS1-3</u>	Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]	
<u>5-PS1-1</u>	Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]	
<u>5-PS1-4</u>	Conduct an investigation to determine whether the mixing of two or more substances results in new substances.	
<u>5-PS1-2</u>	Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.].	
<u>5-ESS3-1</u>	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.	
New Jersey Student Learning Standards for English Language Arts Companion Standards		
CPI #	Cumulative Progress Indicator (CPI)	
W.5.7	Conduct short research projects that use several sources to build knowledge through investigation of	

	different aspects of a topic. (5-PS1-2),(5-PS1-4)
W.5.8	Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-2)(5-PS1-4)
W.5.9	Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-2),(5-PS1-4)
N	ew Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills.
CPI #	Cumulative Progress Indicator (CPI)
9.2.5.CAP1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.
9.4.5.Cl.1	Use appropriate communication technologies to collaborate with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions.
9.4.5.Cl.2	Investigate a persistent local or global issue, such as climate change, and collaborate with individuals with diverse perspectives to improve upon current actions designed to address the issue.
9.4.5.Cl.3	Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity.
9.4.5.Cl.4	Research the development of a product and identify the role of failure as a part of the creative process.
9.4.5.CT.1	Identify and gather relevant data that will aid in the problem-solving process.
9.4.5.IML.3	Represent the same data in multiple visual formats in order to tell a story about the data.
8.1.5.A.1	Select and use the appropriate digital tools and resources to accomplish a variety of tasks including solving problems.
8.1.2.A.4	Demonstrate developmentally appropriate navigation skills in virtual environments (i.e. games, museums).
8.1.5.A.3	Use a graphic organizer to organize information about a problem or issue.
	New Jersey Student Learning Standards for Mathematics and Social Studies
MP.2	Reason abstractly and quantitatively. (5-PS1-2)
MP.4	Model with mathematics. (5-PS1-2)
MP.5	Use appropriate tools strategically. (5-PS1-2)
analytically al heritage. Such	U.S. History: America in the World. All students will acquire the knowledge and skills to think bout how past and present interactions of people, cultures, and the environment shape the American In knowledge and skills enable students to make informed decisions that reflect fundamental rights and tic values as productive citizens in local, national, and global communities.
	Instructional Focus
Unit Enduring	g Understandings

- Matter can be identified based on its external properties.
- Matter is made of particles that are often too small to be seen.
- When mixing two or more substances the result will be a new substance.
- Weight of matter will stay the same regardless of the type of change that occurs.

Unit Essential Questions

- How can properties of matter be used to identify materials?
- How is weight of a material effected by heating, cooling, or mixing?

Objectives

Students will know:

- matter can exist in 3 different states (solid, liquid, gas) and the properties of these states are different.
- matter can be classified as a liquid, solid, or gas based on its properties.
- not all substances fit perfectly into one of the three states of matter.
- all matter can be heated or cooled, but it takes different temperatures in order to cause a phase change of a substance
- no matter what reaction or change in properties occurs, the total weight of the substances does not change
- no matter what reaction or change in properties occurs, the total weight of the substances does not change.
- sometimes combining more than one substance can result in a new substance
- a mixture is made up of substances that can be separated and returned to their original state
- a solution is a type of mixture
- in a chemical change substances cannot return to their original state
- when two substances are mixed, a new substance with different properties may be formed
- matter does not disappear
- chemical reactions may produce gas (which they will often observe as a change in the state of matter)
- a change in weight can be explained by containing the gas that is released by a chemical reaction (fizzing) into its surroundings

Students will be able to:

- name properties of different types of matter.
- classify matter as a solid, liquid, gas, or something in between.
- use various tools to measure and graph substances to address scientific and engineering question and problems
- use measurement descriptions to describe physical quantities such as weight, time, temperature, and volume
- identify physical changes to matter
- use various tools to measure and graph substances to address scientific and engineering questions and problems.
- use measurement descriptions to describe physical quantities such as weight, time, temperature, and volume.
- use various tools to measure and graph substances to address scientific and engineering questions and problems.
- use measurement descriptions to describe physical quantities such as weight, time, temperature, and volume

Evidence of Learning

Assessment

- Class discussions and reflections on various topics and activities throughout the unit.
- Make observations and measurements to identify materials based on their properties.
- Develop a model to describe that matter is made of particles too small to be seen.
- Develop a model showing the reaction between stone and acid rain.

Unit Sequence (Properties of Matter)				
Part A: How can properties be used to identify materials?				
Concepts	Formative Assessments			
 Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Measurements of a variety of properties can be 	 Students who understand the concepts can: Measure and describe physical quantities such as weight, time, temperature, and volume. 			
used to identify materials. (At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)	 Make observations and measurements to produce data that can serve as the basis for evidence for an explanation of a phenomenon. 			
	 Make observations and measurements to identify materials based on their properties. Examples of materials to be identified could include: Baking soda and other powders Metals Minerals Liquids Examples of properties could include: Color Hardness Reflectivity Electrical conductivity Thermal conductivity Response to magnetic forces Solubility 			

Unit Sequence (Properties of Matter)

Part B: What kind of model would best represent/describe matter as made of particles that are too small to be seen?

Concepts

Formative Assessments

 Natural objects exist from the very small to the immensely large. 	Students who understand the concepts can:Develop a model to describe phenomena.
 Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by means other than seeing. 	 Develop a model to describe that matter is made of particles too small to be seen. (Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.) <u>Examples of evidence could include</u>: Adding air to expand a basketball
 A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. 	 Compressing air in a syringe Dissolving sugar in water Evaporating salt water

Unit Sequence (Changes to Matter)

Part A: How can we make slime?

Concepts	Formative Assessment	
 Cause-and-effect relationships are routinely identified, tested, and used to explain change. When two or more different substances are mixed, a new substance with different properties may be formed. 	 Students who understand the concepts are able to: Identify, test, and use cause-and-effect relationships to explain change. Conduct an investigation collaboratively to produce data that can serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials is considered. Conduct an investigation to determine whether the mixing of two or more substances results in new substances. 	

Unit Sequence (Changes to Matter)		
Part B: How can baking soda and vinegar burst a zip-lock bag?		
Concepts	Formative Assessment	
 Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. No matter what reaction or change in properties occurs, the total weight of the substances does not change. (<i>Note: Mass and weight are not distinguished at this grade level.</i>) Science assumes consistent patterns in natural systems. 	 Students who understand the concepts are able to: Measure and describe physical quantities such as weight, time, temperature, and volume. Measure and graph quantities such as weight to address scientific and engineering questions and problems. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when substances are heated, cooled, or mixed, the total weight is conserved. (Note: Assessment does not include distinguishing between mass and weight.) Examples of reactions or changes could include: ✓ Phase changes ✓ Dissolving 	
	✓ Mixing	

What It Looks Like in the Classroom

In this unit of study, students will use mathematical and computational thinking to understand the cause and effect relationship between physical changes in matter and conservation of weight. Throughout the unit, students need multiple opportunities to observe and document changes in matter due to physical changes, and to analyze data to explain changes that do or do not occur in the physical properties of matter.

Students begin by planning and conducting investigations to determine whether or not a new substance is made when two or more substances are mixed (see the Sample Open Education Resources). As they work with a variety of substances, they should:

- Measure, observe, and document physical properties (e.g., color, mass, volume, size, shape, hardness, reflectivity, conductivity, and response to magnetic forces) of two or three substances.
- ✓ Mix the original substances.
- Measure, observe, and document the physical properties of the substance produced when the original substances are mixed.
- ✓ Compare data from the original substances to data from the substance produced, and determine what changes, if any, have occurred.
- Use observations and data as evidence to explain whether or not a new substance was produced, and to explain any changes that occurred when the original substances were mixed.

With each set of substances that students investigate, it is important that they use balances or digital scales to

measure the mass of the original substances and the mass of the substance made when the original substances are mixed. This data should be documented so that students can analyze the data. As they compare the data, they should recognize that when two or more substances are mixed, the mass of the resulting substance equals the sum of the masses of the original substances. In other words, the total mass is conserved.

Conservation of mass is a critical concept that is developed over time; therefore, students need multiple opportunities to investigate this phenomenon. Students should measure the mass of each substance, document the data they collect in a table or chart, and use the data as evidence that regardless of the changes that occur when mixing substances, the total weight of matter is conserved.

In addition to observing changes that occur when substances are mixed, students should also have opportunities to investigate other types of physical changes. For example, students can observe changes in matter due to heating, cooling, melting, freezing, and/or dissolving. As before, students should measure, observe, and document the physical properties of the substance before and after a physical change, and use the data as evidence to explain any changes that occur. The data should also provide evidence that regardless of the type of change that matter undergoes, the mass is conserved.

Connecting with English Language Arts/Literacy and Mathematics

English Language/Arts

Students can conduct short research projects, using both print and digital sources, to build their understanding of physical changes to matter. While reading, they should take notes of relevant information, and summarize that information so that it can be used as evidence to explain the changes that occur as substances are heated, cooled, dissolved, or mixed. When drawing evidence from texts to support analysis, reflection, and research, students should provide a list of sources.

Mathematics

- Use appropriate tools in strategic ways when measuring physical properties of substances, such as weight or volume.
- Model with mathematics when organizing data into tables or charts, and using the data as evidence to explain changes that occur.
- Convert among different-sized standard measurement units within a given measurement system and use these conversions to explain changes that occur.

Modifications

(Note: Teachers identify the modifications that they will use in the unit. See NGSS Appendix D: <u>All Standards,</u> <u>All Students</u>/<u>Case Studies</u> for vignettes and explanations of the modifications.)

- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tools such as SKYPE, experts from the community helping with a project, journal articles, and

biographies).

- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide ELL students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.
- Restructure lesson using UDL principles (<u>About Universal Design for Learning</u>).

Research on Student Learning

Student thinking about chemical change tends to be dominated by the obvious features of the change. For example, some students think that when something is burned in a closed container, it will weigh more because they see the smoke that was produced. Further, many students do not view chemical changes as interactions. They do not understand that substances can be formed by the recombination of atoms in the original substances. Rather, they see chemical change as the result of a separate change in the original substance, or changes, each one separate, in several original substances. For example, some students see the smoke formed when wood burns as having been driven out of the wood by the flame (NSDL, 2015).

Prior Learning

Grade 2 Unit 2: Properties of Matter

- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
- Different properties are suited to different purposes.

Grade 2 Unit 3: Changes to Matter

- A great variety of objects can be built up from a small set of pieces.
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not.

Future Learning

Grade 7 Unit 1: Structure and Properties of Matter

- Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms.
- Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it.

Grade 7 Unit 2: Interactions of Matter

- Gases and liquids are made of molecules or inert atoms that are moving about relative to each other.
- In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations.
- Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals).
- The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter.

Grade 7 Unit 3: Chemical Reactions

- Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.
- The total number of each type of atom is conserved, and thus the mass does not change.
- Some chemical reactions release energy, others store energy.

Connections to Other Units

In Unit 1: Properties of Matter, students describe that matter is made of particles too small to be seen.

In **Unit 2: Water on Earth**, students explore the changes of water through the three phases and make connections to the interactions of the Earth spheres.

Teacher Professional Learning Resources

Using the NGSS Practices in the Elementary Grades

The presenters were Heidi Schweingruber from the National Research Council, Deborah Smith from Penn State University, and Jessica Jeffries from State College Area School District. In this seminar the presenters talked about applying the scientific and engineering practices described in A Framework for K–12 Science Education in elementary-level classrooms.

Continue the discussion in the community forums.

Teaching NGSS in K-5: Constructing Explanations from Evidence

Carla Zembal-Saul, Mary Starr, and Kathy Renfrew, provided an overview of the NGSS for K-5th grade. The web seminar focused on the three dimensional learning of the NGSS, while introducing

CLAIMS-EVIDENCE-REASONING (CER) as a framework for introducing explanations from evidence. The presenters highlighted and discussed the importance of engaging learners with phenomena, and included a demonstration on using a KLEWS chart to map the development of scientific explanations of those phenomena.

View the resource collection.

Continue discussing this topic in the community forums.

NGSS Core Ideas: Matter and Its Interactions

The presenter was Joe Krajcik from Michigan State University. The program featured strategies for teaching about physical science concepts that answer questions such as "How do particles combine to form the variety of matter one observes?" and "How do substances combine or change (react) to make new substances?"

Dr. Krajcik began the presentation by defining disciplinary core ideas and discussing the value of using core ideas to build understanding across time. He also talked about the way disciplinary core ideas work together with the other components of NGSS: scientific and engineering practices and crosscutting concepts. Dr. Krajcik talked about the disciplinary core ideas for PS1 and shared examples of student work. Participants had the opportunity to ask questions and discuss ideas for classroom application with other participating teachers.

Visit the <u>resource collection</u>.

Continue discussing this topic in the <u>community forums</u>.

Appendix A: NGSS and Foundations for the Unit

Conduct an investigation to determine whether the mixing of two or more substances results in new substances. (<u>5-PS1-4</u>)

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]. (5-PS1-2)

Framework for K-12 Science Education:				
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts		
 Developing and Using Models Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. Develop a model to describe phenomena. (5-PS1-1) Planning and Carrying Out Investigations Conduct an investigation collaboratively to produce 	 PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon; the effects of air 	 Cause and Effect Cause and effect relationships are routinely identified and used to explain change. (5-PS1-4) Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-2) Connections to Nature of Science Scientific Knowledge Assumes an Order and Consistency in Natural Systems 		

The performance expectations above were developed using the following elements from the NRC document <u>A</u> <u>Framework for K-12 Science Education</u>:

data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (5-PS1-4) Using Mathematics and Computational Thinking	 on larger particles or objects. (5-PS1-1) The amount (weight) of matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2) 	 Science assumes consistent patterns in natural systems. (5-PS1-2)
 Measure and graph quantities such as weight to address scientific and engineering questions and problems. (5-PS1-2) 	 Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3) 	
	 PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4) <u>Climate Change</u> <u>5-ESS3-1</u> Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues. 	

Grade/ Grade Band: 5th Grade	Topic: States of Matter	Lesson # <u>1</u> in a series of <u>4</u> lessons
•	will explore different objects and de	cide what phase of matter the object is
based on its properties.		
Recommended Pacing: 4 days		
Performance Expectation(s):		
 Make observations and me 	asurements to identify materials bas	ed on their properties (5-PS1-3).
Specific Learning Outcomes: Stude	nts will be able to determine the pro	perties of different types of matter and
use this information to classify the	matter as a solid, liquid, gas, or some	thing in between.
Students will be able to:		
 Name properties of differe 	nt types of matter.	
	quid, gas, or something in between.	
Students will understand:		
	ent states (solid. liquid. gas) and the n	roperties of these states are different.
	a liquid, solid, or gas based on its pro	
 Not all substances fit perfe 	ctly into one of the three states of ma	itter.
Narrative / DCI: Background Inforr Prior Student Knowledge:	nation	
_	~	
Grade 2 Unit 2: Properties of Matt		
	kist and many of them can be either s id classified by its observable propert	olid or liquid, depending on temperature
 Different properties are sui 		
Grade 2 Unit 3: Changes to Matter		
_	an be built up from a small set of pied	
		bserved. Sometimes these changes are
reversible, and sometimes		
Colones O Frankrish Doorth		
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:
Asking Questions (science) and	PS1.A: Structure and Properties of	of D Patterns
defining problems	Matter	Cause and effect: Mechanism
(engineering).	• The amount (weight) of	and explanation
Developing and using models.	matter is conserved when	
Planning and carrying out investigations.	changes form, even in transitions in which it	 Systems and system models Energy and matter: Flows,
 Analyzing and interpreting data. 		
 Using mathematics and 	 Measurements of a variet 	
computational thinking.	of properties can be used	
Constructing explanations	identify materials.	
	(Decomplete Attribute and a	1
(science) and designing solutions (engineering).	(Boundary: At this grade level, mass and weight ar	
(science) and designing	(Boundary: At this grade	

not distinguished, and no

attempt is made to define

Engaging in argument from

evidence.

_			
	Obtaining, evaluating, and	the unseen particles or	
	communicating information.	explain the atomic-scale	
		mechanism of evaporation	
		and condensation.)	
		(5-PS1-3)	

Possible Preconceptions/Misconceptions:

- All matter fits the description of a solid, liquid, or gas.
- Sand is a liquid because it seems to flow like water when wet and may mold to its container.
- Oobleck is a solid or liquid (only one).
 - It is something in between. It has properties of a liquid and a solid (non-newtonian fluid).
- Toothpaste is a solid or liquid (only one).
 - It is something in between. It has properties of a liquid and solid (non-newtonian fluid).
- Shaving Cream is a solid, liquid, or gas (only one).
 - It is something in between. It is a foam and therefore has properties of a liquid and gas. It consists of tiny air bubbles dispersed in liquid.

Some students may come with the belief/understanding that:

- Matter is any object that takes up space and has mass.
- There are three states of matter.
 - A solid has a fixed shape and volume. The molecules are packed tightly together.
 - A liquid has a fixed volume, but can flow and take on the shape of the container in which they are placed. Molecules are somewhat close together but further apart in comparison to a solid.
 - A gas has neither a defined volume nor defined shape. The particles are much further apart and, because there is a lot of space in between the particles, move easily.
- Less commonly known 4th state of matter is plasma.
 - A plasma is a hot ionized gas consisting of approximately equal numbers of positively charged ions and negatively charged electrons. The characteristics of plasmas are significantly different from those of ordinary neutral gases so that plasmas are considered a distinct "fourth state of matter."
- Sand is a solid (it often is listed in informational texts).

LESSON PLAN – 5-E Model

Grade/ Grade Band: 5th Grade	Topic: Physical Changes to Matter	Lesson # <u>2</u> in a series of <u>4</u> lessons
------------------------------	-----------------------------------	---

Brief Lesson Description: Students will explore that adding and removing heat causes some materials to change form by working through four investigative stations.

Recommended Pacing: 1 day

The main lesson will take place in one period. Students will need to take 5 minutes from homeroom/morning meeting/beginning of period each day for a week to continue adding information to the class graph. Additional time at the end of the week will be required to analyze the data collected.

Performance Expectation(s):

- Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. **5-PS1-2**
- Measure and graph quantities such as weight to address scientific and engineering questions and problems. **5-PS1-2**

Specific Learning Outcomes:

Students will be able to:

- use various tools to measure and graph substances to address scientific and engineering question and problems
- use measurement descriptions to describe physical quantities such as weight, time, temperature, and volume
- identify physical changes to matter

Students will understand:

- all matter can be heated or cooled, but it takes different temperatures in order to cause a phase change of a substance
- no matter what reaction or change in properties occurs, the total weight of the substances does not change

Narrative / DCI: Background Information

Prior Student Knowledge:

• This is the first opportunity for students to encounter these ideas.

Grade 2 Unit 2: Properties of Matter

- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
- Different properties are suited to different purposes.

Grade 2 Unit 3: Changes to Matter

- A great variety of objects can be built up from a small set of pieces.
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not.

Sc	ience & Engineering Practices:	Disciplinary Core Ideas: Crosscutting Concepts:	
	Asking Questions (science) and defining problems (engineering).	 PS1.A: Structure and Properties of Matter The amount (weight) of Patterns Cause and effect: Mechanism an explanation 	d
	Developing and using models. Planning and carrying out investigations.	matter is conserved when it changes form, even in transitions in which itImage: Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles,	,
	Analyzing and interpreting data.	seems to vanish. and conservation (5-PS1-2) J Structure and function	
	Using mathematics and computational thinking.	 Measurements of a variety of properties can 	
	Constructing explanations (science) and designing solutions (engineering).	be used to identify materials. (Boundary: At this grade level, mass and	
	Engaging in argument from evidence.	weight are not distinguished, and no	
	Obtaining, evaluating, and communicating information.	attempt is made to define the unseen particles or explain the atomic-scale mechanism	
		of evaporation and condensation.) (5-PS1-3)	

Possible Preconceptions/Misconceptions:

Some students may come with the belief/understanding that:

- Heat is a substance.
- Heat is not energy. (Heat is energy)
- Temperature is a property of a particular material or object. (For example, students may believe that metal is naturally cooler than plastic.)
- The temperature of an object depends on its size. (Temperature does not depend on size.)
- Heat and cold are different. (Cold is the absence of heat. Heat and cold can be thought of as opposite ends of a continuum.)
- Cold is transferred from one object to another. (Heat is transferred from one object to another. Heat moves from the warmer object to the cooler object.)
- Some substances (flour, sugar, air) cannot heat up. (All substances heat up, although some gain heat more easily than others.)

LESSON PLAN – 5-E Model

Grade/ Grade Band: 5th GradeTopic: Physical vs. Chemical
ChangesLesson # <u>3</u> in a series of <u>4</u> lessons

Brief Lesson Description: Students will rotate through six different stations carrying out investigations that cause changes to matter. Students will determine whether matter is undergoing a physical or chemical change. They will then engage in arguments using evidence from their investigation to conclude what type of change took place at each station.

Recommended Pacing: 6 days

Performance Expectation(s):

- Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. **5-PS1-2**
- Measure and graph quantities such as weight to address scientific and engineering questions and problems. **5-PS1-2**
- Conduct an investigation to determine whether the mixing of two or more substances results in new substances. 5-PS1-4

Specific Learning Outcomes:

Students will be able to:

- use various tools to measure and graph substances to address scientific and engineering questions and problems.
- use measurement descriptions to describe physical quantities such as weight, time, temperature, and volume.

Students will understand that:

- no matter what reaction or change in properties occurs, the total weight of the substances does not change.
- sometimes combining more than one substance can result in a new substance
- a mixture is made up of substances that can be separated and returned to their original state
- a solution is a type of mixture
- in a chemical change substances cannot return to their original state

Narrative / DCI: Background Information

 Matter can be described and Different properties are suite Grade 2 Unit 3: Changes to Matter A great variety of objects can Heating or cooling a substance reversible, and sometimes the 	classified by its observable prop of to different purposes. The built up from a small set of p ce may cause changes that can b rey are not.	ieces. e observed. Sometimes these changes are
 Science & Engineering Practices: Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	 Disciplinary Core Ideas: S1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2) Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3) PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4) 	Crosscutting Concepts: Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change

- changes to matter can only occur physically
- the only proof of a chemical reaction is an explosion
- when matter goes through a chemical change, some of it disappears
- a solution is a chemical change because we can no longer see the solute (solid)

LESSON PLAN – 5-E Model

 Brief Lesson Description: Students will carry out investigations to explain how a phenomenon that so of mass can exist in the natural world. They will be provided with substance reactions and materials that can be used to create closed systems to invest changed after the baking soda and vinegar reacted in the phenomenon. If system, they will see that the weight does not change (or changes only slig is closed off from its surroundings compared to the phenomenon which remended Pacing: 5 days Performance Expectations: Measure and graph quantities to provide evidence that regardless heating, cooling, or mixing substances, the total weight of matter is problems. 5-PS1-2 Conduct an investigation to determine whether the mixing of two substances. 5-PS1-4 	ces that can be used to produce chemical stigate and try to explain why the weight they are successful in creating a closed ghtly due to human error) if the reaction eleased gas(air) into its surroundings.
 of mass can exist in the natural world. They will be provided with substance reactions and materials that can be used to create closed systems to invest changed after the baking soda and vinegar reacted in the phenomenon. If system, they will see that the weight does not change (or changes only slig is closed off from its surroundings compared to the phenomenon which re Recommended Pacing: 5 days Performance Expectations: Measure and graph quantities to provide evidence that regardless heating, cooling, or mixing substances, the total weight of matter i Measure and graph quantities such as weight to address scientific problems. 5-PS1-2 Conduct an investigation to determine whether the mixing of two 	ces that can be used to produce chemica stigate and try to explain why the weight they are successful in creating a closed ghtly due to human error) if the reaction eleased gas(air) into its surroundings.
 Performance Expectations: Measure and graph quantities to provide evidence that regardless heating, cooling, or mixing substances, the total weight of matter i Measure and graph quantities such as weight to address scientific problems. 5-PS1-2 Conduct an investigation to determine whether the mixing of two 	is conserved. 5-PS1-2 and engineering questions and
 Measure and graph quantities to provide evidence that regardless heating, cooling, or mixing substances, the total weight of matter i Measure and graph quantities such as weight to address scientific problems. 5-PS1-2 Conduct an investigation to determine whether the mixing of two 	is conserved. 5-PS1-2 and engineering questions and
 heating, cooling, or mixing substances, the total weight of matter i Measure and graph quantities such as weight to address scientific problems. 5-PS1-2 Conduct an investigation to determine whether the mixing of two 	is conserved. 5-PS1-2 and engineering questions and
Specific Learning Outcomes:	
 Students will be able to: use various tools to measure and graph substances to address scie problems. 	entific and engineering questions and
 use measurement descriptions to describe physical quantities such volume. 	h as weight, time, temperature, and
 Students will understand that: when two substances are mixed, a new substance with different pre- matter does not disappear 	properties may be formed
 chemical reactions may produce gas (which they will often observe a change in weight can be explained by containing the gas that is reinto its surroundings 	
extension: mass and weight are different Narrative / DCI: Background Information	

Students will build on their prior knowledge of the different phases of matter and how matter can change from one phase to another. They will also build on knowledge from the previous lessons in the unit that some substances, but not all, form a chemical reaction when they are mixed together. The Law of Conservation of Mass

will most likely be a new concept for the students, so a brain pop video may be used to provide background knowledge at the teacher's discretion.

brain pop video: computer Video: Law of Conservation of Mass (Brainpop)

Grade 2 Unit 2: Properties of Matter

• Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.

Grade 2 Unit 3: Changes to Matter

• A great variety of objects can be built up from a small set of pieces.

Science & Engineering	Disciplinary Core Ideas:	Crosscutting Concepts:	
Practices:			
	S1.A: Structure and Properties of	Patterns	
Asking Questions (science)	Matter	Cause and effect: Mechanism and	
and defining problems	 The amount (weight) of 	explanation	
(engineering).	matter is conserved	Scale, proportion, and quantity	
Developing and using	when it changes form,	Systems and system models	
models.	even in transitions in	Energy and matter: Flows, cycles, and	
Planning and carrying out	which it seems to vanish.	conservation	
investigations.	<mark>(5-PS1-2)</mark>	Structure and function	
Analyzing and interpreting	 Measurements of a 	Stability and change	
data.	variety of properties can		
Using mathematics and	be used to identify		
computational thinking.	materials. (Boundary: At		
Constructing explanations	this grade level, mass		
(science) and designing	and weight are not		
solutions (engineering).	distinguished, and no		
Engaging in argument from	attempt is made to		
evidence.	define the unseen		
Obtaining, evaluating, and	particles or explain the		
communicating information.	atomic-scale mechanism		
	of evaporation and		
	condensation.) (5-PS1-3)		
	PS1.B: Chemical Reactions		
	No matter what reaction		
	or change in properties		
	occurs, the total weight		
	of the substances does		
	not change. (Boundary:		
	Mass and weight are not		
	distinguished at this		
	grade level.) (5-PS1-2)		
Possible Preconceptions/Misco	nceptions:		
• Matter can disappear			

- When matter goes through a chemical change, some of it disappears
- Mass and weight are the same (distinction does not have to be made the choice is at teacher discretion)
- Every product weighs less than the reactants

• Human error is the sole cause of weight change (human error may be applicable, but is not the sole reasons why the weight changes)

LESSON PLAN – 5-E Model

West Windsor-Plainsboro Regional School District Science Curriculum Grade 5 - Water on Earth-Earth Systems

The Mission of the West Windsor-Plainsboro Science Department

Our mission is to cultivate science learners who have the foundational knowledge to make ethical, scientifically literate decisions and the ability to apply scientific practices in order to contribute to the needs of society and a changing world.

• <u>Vision</u>

We envision a K-12 science experience that supports and challenges every student in their science learning journey. We will:

- Capitalize on diversity by reaching and exciting students at all levels and interests by differentiating learning within classrooms and by offering a robust program of studies.
- Emphasize authentic science and engineering practices and leverage the interdisciplinary nature of science with arts, technology, math, reading, and writing.
- Integrate scientific knowledge and 21st century competencies to prepare students to make informed decisions and take action to address real world problems.

Water on Earth/Earth Systems

Content Area: Grade Five – Unit: Water on Earth/Earth Systems Unit

Course & Grade Level:

Summary and Rationale

How do individual communities use science ideas to protect Earth's resources and environment?

In this unit of study, students describe and graph data to provide evidence about the distribution of water on Earth. The crosscutting concepts of *scale, proportion, quantity* and *systems, and systems models* are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate grade-appropriate proficiency in *using mathematics and computational thinking* and in *obtaining, evaluating, and communicating information*. Students are also expected to use these practices to demonstrate understanding of the core ideas.

This unit is based on 5-ESS2-2 and 5-ESS3-1.

Recommended Pacing		
<mark>22 DAYS -</mark>		
	New Jersey Student Learning Standards for	
Standard: S	tandards for Appendix A: NGSS and Foundations for the Unit	
<u>5-ESS2-2</u>	Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]	
<u>5-ESS3-1</u>	Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.	
Standard: N	U Student Learning Standards for Mathematics	
CPI #	Cumulative Progress Indicator (CPI)	
MP.2	Reason abstractly and quantitatively. (5-ESS2-2), (5-ESS3-1) MP.2	
MP.4	Model with mathematics. (5-ESS2-2), (5-ESS3-1)	
New Jersey Student Learning Standards for English Language Arts Companion Standards		
Standard:		
CPI #	Cumulative Progress Indicator (CPI)	
RI.5.1	Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)	
RI.5.7	Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-2), (5-ESS3-1)	
W.5.8	Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-2), (5-ESS3-1)	
RI.5.9	Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)	
W.5.9	Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)	
SL.5.5	Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-2) West Windsor-Plainsborg BSD	

Ν	lew Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills
CPI #	Cumulative Progress Indicator (CPI)
9.1.5.CR.1	Compare various ways to give back and relate to your strengths, interests, and other personal factors
9.1.5.Fl.1	Identify various types of financial institutions and the services they offer including banks, credit unions, and credit card companies.
9.1.5.PB.1	Develop a personal budget and explain how it reflects spending, saving, and charitable contributions.
9.1.5.PB.2	Describe choices consumers have with money (e.g., save, spend, donate).
9.1.5.RMI.1	Identify risks that individuals and households face.
9.1.5.RMI.2	Justify reasons to have insurance.
9.2.5.CAP.1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.
9.2.5.CAP.2	Identify how you might like to earn an income.
9.4.5.Cl.1	Use appropriate communication technologies to collaborate with diverse perspectives about a local and/or global climate change issue and deliberate about possible solutions.
9.4.5.Cl.2	Investigate a persistent local or global issue, such as climate change, and collaborate with individuals with diverse perspectives to improve upon current actions designed to address the issue.
9.4.5.Cl.3	Participate in a brainstorming session with individuals with diverse perspectives to expand one's thinking about a topic of curiosity.
9.4.5.Cl.4	Research the development of a product and identify the role of failure as a part of the creative process.
9.4.5.CT.1	Identify and gather relevant data that will aid in the problem-solving process.
9.4.5.CT.2	Identify a problem and list the types of individuals and resources (e.g., school, community agencies, governmental agencies, online) that can aid in solving the problem.
9.4.5.CT.3	Describe how digital tools and technology may be used to solve problems.
9.4.5.CT.4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global.
9.4.5.GCA.1	Analyze how culture shapes individual and community perspectives and points of view.
9.4.5.IML.1	Evaluate digital sources for accuracy, perspective, credibility and relevance (e.g., Social Studies Practice - gathering and evaluating sources)
9.4.5.IML.2	Create a visual representation to organize information about a problem or issue.
9.4.5.IML.3	Represent the same data in multiple visual formats in order to tell a story about the data.
8.1.5.A.1	Select and use the appropriate digital tools and resources to accomplish a variety of tasks including solving problems.
8.1.2.A.4	Demonstrate developmentally appropriate navigation skills in virtual environments (i.e. games, museums).
8.1.5.A.3	Use a graphic organizer to organize information about a problem or issue.
	New Jersey Student Learning Standards for Mathematics and Social Studies
MP.2	Reason abstractly and quantitatively. (5-PS1-2)
MP.4	Model with mathematics. (5-PS1-2)

MP.5 Use appropriate tools strategically. (5-PS1-2) Standard 6.1 U.S. History: America in the World. All students will acquire the knowledge and skills to think analytically about how past and present interactions of people, cultures, and the environment shape the American heritage. Such knowledge and skills enable students to make informed decisions that reflect fundamental rights and core democratic values as productive citizens in local, national, and global communities. **Instructional Focus Unit Enduring Understandings** A system can be described in terms of its components and their interactions. • Science findings are limited to questions that can be answered with empirical evidence. Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, • streams, ocean, air, and even outer space. Individuals and communities are doing things to help protect Earth's resources and environments. **Unit Essential Questions** How do individual communities use science ideas to protect Earth's resources and environment? Objectives Students will know: nearly all of Earth's available water is in the ocean. most freshwater is in glaciers or underground and that only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. the water cycle is the change of water over time an interaction between hot (hot water in model) and cold (ice in model) temperatures is necessary for • condensation to happen Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere ٠ (water and ice), the atmosphere (air), and the biosphere (living things, including humans). the water cycle includes many different processes which involve the different spheres • • winds and clouds in the atmosphere interact with landforms to determine patterns of weather. earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). a system is a group of related parts that make up a whole and can carry out functions its individual parts • cannot. They can also describe a system in terms of its components and their interactions. human activity has negative impacts on the environment and the well-being of animals changes to the environment affect animals humans can use scientific ideas to protect or prevent further damage to the environment humans have a responsibility to protect and conserve the environment and animals • Students will be able to: • use standard units to measure weight and volume describe physical quantities such as weight and volume • identify the major parts of the water cycle and explain what is happening at each step • identify what each part of the Water Cycle in a Bowl model represents in the real world • • identify examples of each of the spheres in their water cycle diagram and label these examples with the correct sphere they belong to discuss how the different processes of the water cycle fit within the different spheres identify patterns across the interaction of winds, weather and atmospheric pressure • observe variable change in terms of differences in atmospheric and weather conditions measure the frequency of storm systems over time **Evidence of Learning** Assessment

- Class discussions and reflections on various topics and activities throughout the unit
- Students will evaluate human solutions of protection during natural and man made disasters.

Resources

Core Text:

Mystery Science

How Much Water Is In the World? When you Turn on the Faucet WATERY PLANET NATURAL DISASTERS and ENGINEERING

Gizmos

Phases of Water Water Cycle Hurricane Motion

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions. (5-ESS2-2) Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1) 	 ESS2.C: The Roles of Water in Earth's Surface Processes Nearly all of Earth's available water is in the ocean. Most freshwater is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2) ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. (5-ESS3-1) Climate Change 5-ESS3-1 Obtain and combine information about ways individual communities use science ideas to protect 	 Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume. (5-ESS2-2) Systems and System Models A system can be described in terms of its components and their interactions. (5-ESS3-1) Connections to Nature of Science Science Addresses Questions About the Natural and Material World. Science findings are limited to questions that can be answered with empirical evidence. (5-ESS3-1)

the Earth's resources,
environment, and address
climate change issues.

Distribution of Water on Earth Lesson

Grade/ Grade Band: 5th Grade	Topic: Distribution of Water on	Lesson # <u>1</u> in a series of <u>5</u>	
Grade/ Grade Band: Still Grade	Earth	lessons	

Brief Lesson Description: Students will investigate the distribution of water on Earth and graph their results in a circle graph.

This lesson, *The Distribution of Water on Earth*, begins with students brainstorming ways people use water and generating a top ten list. A class list is compiled based on students' ideas. This leads into a conversation about the sources of water from which people might get water. Students will then take part in an investigation to determine how much water is available for human consumption. There are three options for a teacher to choose from based upon student needs. In each investigation, students will explore how much water on earth is saltwater and freshwater and how much freshwater is available for human consumption. There are three options. They organize their data into a table which is then used to create a circle graph to visually depict the information. The lesson concludes with an oral or written analysis of what they notice about water distribution on Earth. This lesson also provides extension activities to have students investigate conservation efforts on the available water supply.

Recommended Pacing: 5 Days

Performance Expectation(s):

• Develop graphs to provide evidence about the distribution of water on Earth

Specific Learning Outcomes: Students will be able to determine where water is found on Earth and what percentage of the Earth's water is freshwater.

Students will be able to:

- use standard units to measure weight and volume
- describe physical quantities such as weight and volume

Students will understand:

- Nearly all of Earth's available water is in the ocean.
- Most freshwater is in glaciers or underground and that only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.

Narrative / Background Information

Prior Student Knowledge:

Grade 2 Unit 4: The Earth's Land and Water

• Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.

Science & Engineering Practices:		Disciplinary Core Ideas:	Crosscutting Concepts:	
	Asking Questions (science) and	ESS2.C: The Roles of Water in	Patterns	
	defining problems (engineering).	Earth's Surface Processes	Cause and effect: Mechanism	
	Developing and using models.	Nearly all of Earth's available water	and explanation	
	Planning and carrying out	<mark>is in the ocean. Most freshwater is</mark>	Scale, proportion, and quantity	
	investigations.	in glaciers or underground; only a	Systems and system models	
	Analyzing and interpreting data.	tiny fraction is in streams, lakes,	Energy and matter: Flows,	
	Using mathematics and	wetlands, and the atmosphere.	cycles, and conservation	
	computational thinking.	<mark>(5-ESS2-2)</mark>	Structure and function	
	Constructing explanations		Stability and change	
	(science) and designing solutions	ESS2.A: Earth Materials and		
	(engineering).	Systems		

Engaging in argument from	Earth's major systems are the				
evidence.	geosphere (solid and molten rock,				
Obtaining, evaluating, and	soil, and sediments), the				
communicating information	hydrosphere (water and ice), the				
	atmosphere (air), and the biosphere				
	(living things, including humans).				
	These systems interact in multiple				
	ways to affect Earth's surface				
	materials and processes. The ocean				
	supports a variety of ecosystems				
	and organisms, shapes landforms,				
	and influences climate. Winds and				
	clouds in the				
	atmosphere interact with the				
	landforms to				
	determine patterns of weather.				
	(5-ESS2-1)				
	ESS3.C: Human Impacts on Earth				
	Systems				
	Human activities in agriculture,				
	industry, and everyday life have had				
	major effects on the land,				
	vegetation, streams, ocean, air, and				
	even outer space. But individuals				
	and communities are doing things				
	to help protect Earth's resources				
	and environments. (5-ESS3-1)				
Possible Preconceptions/Misco	onceptions:				
•	 Students may think that in order for it to be water needs to be in the liquid form 				
-					
-	groundwater, ice caps, permafrost, atmospheric				
	• Students may think that rain is "new" water				
-	nteraction of Earth's Spheres and Modeling				
LESSON PLAN – 5-E Model					

Water Cycle Lesson

Water Cycle Lesson				
Grade/ Grade Band: 5 Topic: Water Cycle		Lesson #2_ in a series of <u>5</u> lessons		
Brief Lesson Description: Studen	ts will learn about the major ster	os of the water cycle and explain what is		
happening at each step.				
Recommended Pacing: 3 Days				
Performance Expectation(s):				
	, , ,	eosphere, biosphere, hydrosphere, and/or spheres - we will revisit this idea in a later		

lesson)

Specific Learning Outcomes:

Students will be able to

- identify the major parts of the water cycle and explain what is happening at each step
- identify what each part of the Water Cycle in a Bowl model represents in the real world

Students will understand:

- the water cycle is the change of water over time
- an interaction between hot (hot water in model) and cold (ice in model) temperatures is necessary for condensation to happen

Narrative / Background Information

Prior Student Knowledge:

Grade 2 Unit 4: The Earth's Land and Water

- Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.
- Wind and water can change the shape of the land.

Grade 3 Unit 1: Weather and Climate

• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.

• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.

Grade 4 Unit 1: Weathering and Erosion

• Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around.

Sc	ience & Engineering Practices:	Disciplinary Core Ideas:	Cro	osscutting Concepts:
	Asking Questions (science) and	ESS2.C: The Roles of Water in Earth's Surface Processes		Patterns
	defining problems (engineering). Developing and using models.	Nearly all of Earth's available water		Cause and effect: Mechanism and explanation
	Planning and carrying out investigations.	is in the ocean. Most freshwater is in glaciers or underground; only a		Scale, proportion, and quantity Systems and system models
	Analyzing and interpreting data. Using mathematics and	tiny fraction is in streams, lakes, wetlands, and the atmosphere.		Energy and matter: Flows, cycles, and conservation
	computational thinking. Constructing explanations	(5-ESS2-2)		Structure and function Stability and change
	(science) and designing solutions (engineering).	ESS2.A: Earth Materials and Systems		
	Engaging in argument from evidence.	Earth's major systems are the geosphere (solid and molten rock,		
	Obtaining, evaluating, and communicating information.	soil, and sediments), the hydrosphere (water and ice), the		
		atmosphere (air), and the biosphere (living things, including humans).		
		These systems interact in multiple ways to affect Earth's surface		
		materials and processes. The ocean supports a variety of ecosystems		

	and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)	
	ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. (5-ESS3-1)	
 Possible Preconceptions/Misconceptions: Students may think that rain is "new" water Students may think that the water cycle is only evaporation, precipitation, and condensation Students may think the Earth has an endless supply of water 		

LESSON PLAN – 5-E Model

Earth's Spheres Lesson

Grade/ Grade Band: 5	Topic: Earth Systems	Lesson # _3_ in a series of _5_ lessons
Brief Lesson Description: Students	s will label examples of the four d	ifferent spheres on their water cycle models.
Recommended Pacing: 4 Days		
	lop a model using an example to	describe ways the geosphere, biosphere,
hydrosphere, and/or atmosphere in		
		bel examples of each of the spheres in their
water cycle diagrams or add examp	-	
-	each sphere into their water cycl processes of the water cycle fit wit	-
Students will understand:		
	he geosphere (solid and molten r phere (air), and the biosphere (liv	ock, soil, and sediments), the hydrosphere ing things, including humans).
The water cycle includes m	any different processes which inv	volve the different spheres
Narrative / Background Information	on	
	West Windsor-Plainsboro F	RSD

Prior Student Knowledge:

Grade 2 Unit 4: The Earth's Land and Water

- Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.
- Wind and water can change the shape of the land.

Grade 3 Unit 1: Weather and Climate

• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.

• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.

Grade 4 Unit 1: Weathering and Erosion

• Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around.

•	•	5-ESS3-1 Obtain and combine
		information about ways
		individual communities use
		science ideas to protect the
		Earth's resources, environment,
		and address climate change
		<mark>issues.</mark>

Possible Preconceptions/Misconceptions:

- There are more than four spheres.
 - In later grades, the earth may be subdivided into more than 4 spheres. At grade 5, students are only expected to know that the earth is divided into the geosphere, hydrosphere, atmosphere, and biosphere.
- The lithosphere is an additional sphere.
 - The lithosphere is another name for the geosphere. The geosphere and the lithosphere are the same sphere.
- Plants are in the geosphere.
 - Plants are living things, so they are part of the biosphere.
- Students may think soil, sand, and rocks are living because living micro and macro-organisms live in, on, or around them.

LESSON PLAN – 5-E Model

Hurricane Lesson

Grade/ Grade Band: Fifth Grade	Topic: Hurricane	Lesson # <u>4</u> in a series of <u>5</u> lessons
--------------------------------	------------------	--

Brief Lesson Description: Students will learn about the interaction of the atmosphere, winds and weather patterns and their collective impact on earth.

Recommended Pacing: 4 Days

Performance Expectation(s):

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. (5-ESS2-1)

Specific Learning Outcomes:

Students will be able to:

- identify patterns across the interaction of winds, weather and atmospheric pressure
- observe variable change in terms of differences in atmospheric and weather conditions
- measure the frequency of storm systems over time

Students will understand:

- Winds and clouds in the atmosphere interact with landforms to determine patterns of weather.
- Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), **the atmosphere** (air), and the biosphere (living things, including humans).
- A system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. They can also describe a system in terms of its components and their interactions.

Narrative / Background Information

Prior Student Knowledge:

Grade 2 Unit 4: The Earth's Land and Water

• Wind and water can change the shape of the land.

Grade 3 Unit 1: Weather and Climate

• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.

• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.

So	ience & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:
	 ience & Engineering Practices: Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	Disciplinary Core Ideas: ESS2.C: The Roles of Water in Earth's Surface Processes Nearly all of Earth's available water is in the ocean. Most freshwater is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2) ESS2.A: Earth Materials and Systems • Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth's surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to	Crosscutting Concepts: Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change
		 5-ESS3-1 Obtain and combine information about ways individual communities use science ideas to protect the 	

	Earth's resources, environment, and address climate change issues.	
Possible Preconceptions/Misconceptions:		

- Students may think local weather patterns and climate are the same thing
- Students may think that storms are only influenced by the water cycle and may not connect to the land
- Students may think that water only gets evaporated from the ocean or lakes.
- Students may think that clouds go to the sea and get filled with water.
- Students may think that rain falls out of the sky when the clouds evaporate or that rain comes from holes in clouds

LESSON PLAN – 5-E Model

NGSS Engineering Task (Oil Spill)

Grade/ Grade Band: 5	Topic: Oil Spills Engineering Task	Lesson # <u>5</u> in a series of <u>5</u>
Glader Glade Balld. 5	Topic. On Spins Engineering Task	lessons

Brief Lesson Description: Students will be shown a video describing the effect of the Deepwater Horizon (BP) oil spill on Cat Island (a breeding ground for many species of migratory birds). Students will then engage in the engineering process to determine the quickest and most environmentally friendly way to clean up oil spills, test their solution, and reflect on their solution. See this <u>link</u> for an alternative lesson plan format.

Recommended Pacing: 4 Days

Engineering Notes

Performance Expectation(s):Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources, environment, and address climate change issues.

Specific Learning Outcomes:

Students will be able to:

- engage in all parts of the engineering design process
 - $\circ \quad \text{define the problem} \\$
 - design and test solutions
 - optimize their solution
- use research materials to choose and test possible ways to clean up oil spills
- evaluate (compare) solutions and choose the solution that best solves the problem while meeting the criteria and constraints provided to them
- work collaboratively with a team

Students will understand:

- human activity has negative impacts on the environment and the well-being of animals
- changes to the environment affect animals
- humans can use scientific ideas to protect or prevent further damage to the environment
- humans have a responsibility to protect and conserve the environment and animals

Narrative / Background Information

Prior Student Knowledge:

Grade 2 Unit 4: The Earth's Land and Water

• Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. • Wind and water can change the shape of the land.

Grade 3 Unit 1: Weather and Climate

• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.

• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.

Grade 4 Unit 1: Weathering and Erosion

• Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around.

Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:
 Science & Engineering Practices: Asking Questions (science) and defining problems (engineering). Developing and using models. Planning and carrying out investigations. Analyzing and interpreting data. Using mathematics and computational thinking. Constructing explanations (science) and designing solutions (engineering). Engaging in argument from evidence. Obtaining, evaluating, and communicating information. 	Disciplinary Core Ideas: ESS2.C: The Roles of Water in Earth's Surface Processes Nearly all of Earth's available water is in the ocean. Most freshwater is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2) ESS2.A: Earth Materials and Systems Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth's surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and	Crosscutting Concepts: Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change
	and organisms, shapes landforms,	

	Earth's resources, environment, and address climate change issues.			
Possible Preconceptions/Misconceptions:				
 Preconceptions: oil spills are bad for the enviro oil spills are caused by human knowledge of oil spills that hat 	S			

Misconceptions:

- oil spills only affect the ocean
- oil disappears in the ocean
- dawn is used to clean up oil spills (only animals in the commercials)
- oil spills are cleaned up quickly or are easy to clean up

LESSON PLAN – 5-E Model

Teacher Professional Learning Resources

Teaching NGSS in K-5: Making Meaning through Discourse

The presenters were Carla Zembal-Saul, (Penn State University), Mary Starr, (Michigan Mathematics and Science Centers Network), and Kathy Renfrew (Vermont Agency of Education). After a brief introduction about the Next Generation Science Standards (*NGSS*), Zembal-Saul, Starr, and Renfrew gave context to the *NGSS* specifically for K-5 teachers, discussing three-dimensional learning, performance expectations, and background information on the *NGSS* framework for K-5. The presenters also gave a number of examples and tips on how to approach *NGSS* with students, and took participants' questions. The web seminar ended with the presentation of a number of recommended NSTA resources for participants to explore.

View the <u>resource collection</u>.

Continue discussing this topic in the <u>community forums</u>.

Evaluating Resources for NGSS: The EQuIP Rubric

The presenters were Brian J. Reiser, Professor of Learning Sciences in the School of Education and Social Policy at Northwestern University, and Joe Krajcik, Director of the CREATE for STEM Institute.

After a brief overview of the *NGSS*, Brian Reiser, Professor of Learning Sciences, School of Education at Northwestern University and Joe Krajcik, Director of CREATE for STEM Institute of Michigan State University introduced the Educators Evaluating Quality Instructional Products (EQuIP) Rubric. The web seminar focused on explaining how the EQuIP rubric can be used to evaluate curriculum materials, including individual lessons, to determine alignment of the lesson and/or materials with the NGSS. Three-dimensional learning was defined, highlighted and discussed in relation to the rubric and the NGSS. An emphasis was placed on how to achieve the conceptual shifts expectations of NGSS and three-dimensional learning using the rubric as a guide. Links to the lesson plans presented and hard copies of materials discussed, including the EQuIP rubric, were provided to participants. The web seminar concluded with an overview of NSTA resources on the NGSS available to teachers by Ted, and a Q & A with Brian Reiser and Joe Krajcik.

View the <u>resource collection</u>.

Continue discussing this topic in the <u>community forums</u>

NGSS Crosscutting Concepts: Systems and System Models

The presenter was Ramon Lopez from the University of Texas at Arlington. Dr. Lopez began the presentation by discussing the importance of systems and system models as a crosscutting concept. He talked about the key features of a system: boundaries, components, and flows and interactions. Dr. Lopez also described different types of system models, including conceptual, mathematical, physical, and computational models. Participants discussed their current classroom applications of systems and system models and brainstormed ways to address challenges associated with teaching this crosscutting concept.

NGSS Core Ideas: Earth's Systems

The presenter was Jill Wertheim from National Geographic Society. The program featured strategies for teaching about Earth science concepts that answer questions such as "What regulates weather and climate?" and "What causes earthquakes and volcanoes?"

Dr. Wertheim began the presentation by introducing a framework for thinking about content related to Earth systems. She then showed learning progressions for each concept within the Earth's Systems disciplinary core idea and shared resources and strategies for addressing student preconceptions. Dr. Wertheim also talked about changes in the way *NGSS* addresses these ideas compared to previous common approaches.

Continue the discussion in the community forums.

NGSS Core Ideas: Earth and Human Activity

The presenters were Susan Buhr Sullivan, Director of the CIRES Education and Outreach Group at University of Colorado; and Aida Awad, Science Department Chair at Maine East High School in Park Ridge, IL and president of the National Association of Geoscience Teachers (NAGT). The program featured strategies for teaching about Earth science concepts that answer questions such as "How do humans depend on Earth's resources?" and "How do humans change the planet?"

Dr. Buhr Sullivan began the presentation by describing the interconnections between this disciplinary core idea and other components of *NGSS*. She then talked about building a foundation for key concepts related to Earth and Human Activity at the elementary level. Ms. Awad continued the discussion by sharing the progression of this core idea through the middle school level and on to high school. The presenters provided a list of resources and activities that teachers can use to begin implementing *NGSS* in the classroom.

Visit the resource collection.

Continue discussing this topic in the community forums.