

West Windsor-Plainsboro Regional School District Statistics Curriculum

Unit 1: Exploring and Understanding Data

Content Area: Mathematics

Course \& Grade Level: Statistics, Grade 11 and 12

Summary and Rationale

Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account.

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.

Recommended Pacing

20 days

New Jersey Student Learning Standards for Mathematics

High School Standard ID: Interpreting Categorical and Quantitative Data

CPI \#	Cumulative Progress Indicator (CPI)
A	Summarize, represent, and interpret data on a single count or measurement variable.
A. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).
A. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
A .3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
A. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
B	Summarize, represent, and interpret data on two categorical and quantitative variables
B .5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

New Jersey Student Learning Standards for English Language Arts Companion Standards		
Standard: Science Key Ideas and Details		
CPI \#	Cumulative Progress Indicator (CPI)	
RST.9-10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	
Standard: Science Craft and Structure		
CPI \#	Cumulative Progress Indicator (CPI)	
RST.9-10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.	
Standard: Science Integration of Knowledge and Ideas		
CPI \#	Cumulative Progress Indicator (CPI)	
RST.9-10.7.	Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.	
New Jersey Student Learning Standards for 21 st Century Life and Careers		
Career Ready Practices		
CPI \#	Cumulative Progress Indicator (CPI)	
CRP2.	Apply appropriate academic and technical skills.	
CRP4.	Communicate clearly and effectively and with reason	
CRP8	Utilize critical thinking to make sense of problems and persevere in solving them. CRP11	
Use technology to enhance productivity.		
CPI \#	Cumulative Progress Indicator (CPI)	

Instructional Focus

Unit Enduring Understandings

- The study of Statistics is essential to helping mathematicians analyze, understand and explain real life phenomena.
- Technology is vital to applying statistical techniques
- Statisticians communicate their understanding of concepts both in oral and written form
- Understanding the normal distribution is a key element of analyzing data

Unit Essential Questions

- How can I be a critical consumer of statistics, intelligently questioning and analyzing uses and abuses of statistics in the world outside the classroom?

Objectives

Students will know:

- Techniques to explore sets of data, identifying patterns and departures from patterns, and determining the significance of these departures
- How to recognize possible associations and trends in data.

Students will be able to:

- Read Dot Plots, Histograms, box plots and other data displays
- Compute and explain measures of central tendency
- Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages.
- Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).

Evidence of Learning

Assessment

Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of PSAT and NJSLA data.

Competencies for $21^{\text {st }}$ Century Learners

Collaborative Team Member	
Globally Aware, Active, \& Responsible Student/Citizen	
Innovative \& Practical Problem Solver	

Effective Communicator
Information Literate Researcher

Self-Directed Learner

Resources

Core Text: Stats in Your World, Pearson, 2012
Suggested Resources:

Unit 2: Exploring Relationships Between Variables

Content Area: Mathematics

Course \& Grade Level: Statistics, Grade 11 and 12

Summary and Rationale

Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account.

Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.

Recommended Pacing

22 days

New Jersey Student Learning Standards for Mathematics	
High School Standard ID: Interpreting Categorical and Quantitative Data	
CPI \#	Cumulative Progress Indicator (CPI)
B	Summarize, represent, and interpret data on two categorical and quantitative variables
B 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
B 6a	Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
B 6b	Informally assess the fit of a function by plotting and analyzing residuals.
B 6c	Fit a linear function for a scatter plot that suggests a linear association.
C	Interpret linear models
C 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
C 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.
C 9	Distinguish between correlation and causation.

New Jersey Student Learning Standards for English Language Arts Companion Standards

Standard: Science Key Ideas and Details	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
Standard: Science Craft and Structure	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
Standard: Science Integration of Knowledge and Ideas	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.7.	Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
New Jersey Student Learning Standards for $21{ }^{\text {st }}$ Century Life and Careers	
Career Ready Practices	
CPI \#	Cumulative Progress Indicator (CPI)
CRP2.	Apply appropriate academic and technical skills.
CRP4.	Communicate clearly and effectively and with reason
CRP8	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11	Use technology to enhance productivity.
New Jersey Student Learning Standards for Technology	
CPI \#	Cumulative Progress Indicator (CPI)
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge.
New Jersey Student Learning Standards for Science	
CPI \#	Cumulative Progress Indicator (CPI)
HS-LS3-3	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population

Instructional Focus

Unit Enduring Understandings

- The study of Statistics is essential to helping mathematicians analyze, understand and explain real life phenomena.
- Technology is vital to applying statistical techniques
- Statisticians communicate their understanding of concepts both in oral and written form

Unit Essential Questions

- What is the distinction between correlation and causation?

Objectives

Students will know:

- How to read and interpret a scatterplot
- The meanings of correlation and causation

Students will be able to:

- Represent data on two quantitative variables on a scatter plot
- Assess the fit of a function by plotting and analyzing residuals.
- Fit a linear function for a scatter plot that suggests a linear association.
- Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- Compute (using technology) and interpret the correlation coefficient of a linear fit.

Evidence of Learning

Assessment

Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of PSAT and NJSLA data.
Competencies for $\mathbf{2 1}^{\text {st }}$ Century Learners

	Collaborative Team Member		Effective Communicator
Globally Aware, Active, \& Responsible Student/Citizen		Information Literate Researcher	
Innovative \& Practical Problem Solver Resources			

Core Text: Stats in Your World, Pearson, 2012
Suggested Resources:

Unit 3: Gathering Data	
Content Area: Mathematics	
Course \& Grade Level: Statistics, Grade 11 and 12	
Summary and Rationale	
Decisions or predictions are often based on data-numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account. Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a comparison might mean, depend on the question to be investigated and the real-life actions to be taken.	
Recommended Pacing	
22 days	
New Jersey Student Learning Standards for Mathematics	
Standard 4.S-IC Making Inferences \& Justifying Conclusions	
CPI \#	Cumulative Progress Indicator (CPI)
A	Understand and evaluate random processes underlying statistical experiments
A 1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
A 2	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
	New Jersey Student Learning Standards for English Language Arts Companion Standards
Standard: Science Key Ideas and Details	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
Standard: Science Craft and Structure	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10
	West Windsor-Plainsboro RSD Page 8 of 17

	texts and topics.
Standard: Science Integration of Knowledge and Ideas	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.7.	Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
New Jersey Student Learning Standards for $21{ }^{\text {st }}$ Century Life and Careers	
Career Ready Practices	
CPI \#	Cumulative Progress Indicator (CPI)
CRP2.	Apply appropriate academic and technical skills.
CRP4.	Communicate clearly and effectively and with reason
CRP8	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11	Use technology to enhance productivity.
New Jersey Student Learning Standards for Technology	
CPI \#	Cumulative Progress Indicator (CPI)
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge.
Instructional Focus	
Unit Enduring Understandings	
- A statistician must understand the importance of experiment design to judge the validity of an experiment - There are specific mathematical techniques to explore sets of data, to identify departures from established patterns, and to determine the significance of these departures.	
Unit Essential Questions	
- How does a statistician decide what variables and how to measure them when planning a study? - How important is the design of an experiment?	
Objectives	
Students will be able to: - Look for possible problems in sample surveys including sampling bias, under-coverage, nonresponse, response bias and wording of questions - Learn the value, as well as the limitations, of anecdotal evidence - Distinguish between observational studies and experiments, and recognize the inherent qualities of each - Design experiments, taking into consideration the importance of randomization, replication, and control in their design - Look for possible problems in experiment designs including bias and lack of realism - Use simulations (using random number tables, as well as the TI-83-84) to begin to understand the nature of sampling distribution - Consider the effects of both bias and variability on sampling distributions and any attempt to estimate a population parameter with a sample statistic	

Evidence of Learning		
Assessment		Effective Communicator
Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of PSAT and NJSLA data.		
Competencies for 21 ${ }^{\text {st }}$ Century Learners		
	Collaborative Team Member	Information Literate Researcher
Globally Aware, Active, \& Responsible Student/Citizen	Self-Directed Learner	
	Innovative \& Practical Problem Solver	
Core Text: Stats in Your World, Pearson, 2012 Suggested Resources:		

Unit 4: Randomness and Probability	
Content Area: Mathematics	
Course \& Grade Level: Statistics, Grade 11 and 12	
Summary and Rationale	
Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn. Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables.	
Recommended Pacing	
30 days	
New Jersey Student Learning Standards for Mathematics	
High School Standard CP: Conditional Probability and the Rules of Probability	
CPI \#	Cumulative Progress Indicator (CPI)
A	Understand independence and conditional probability and use them to interpret data
A 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
A 2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
A 3	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
A 4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
A 5	Recognize and explain the concepts of conditional probability and independence in

	everyday language and everyday situations.
B	Use the rules of probability to compute probabilities of compound events.
B 6	Find the conditional probability of A given B as the fraction of B^{\prime} s outcomes that also belong to A, and interpret the answer in terms of the model.
B 7	Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
B 8	$(+)$ Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)=$ $P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
B 9	(+) Use permutations and combinations to compute probabilities of compound events and solve problems.
High School Standard MD: Using Probability to Make Decisions	
CPI \#	Cumulative Progress Indicator (CPI)
A	Calculate expected values and use them to solve problems
A 1	(+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
A 2	(+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
A 3	(+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value.
A 4	(+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.
B	Use probability to evaluate outcomes of decisions
B 5	(+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
B 5a	Find the expected payoff for a game of chance.
B 5b	Evaluate and compare strategies on the basis of expected values.
B 6	(+) Use probabilities to make fair decisions.
B 7	(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
	New Jersey Student Learning Standards for English Language Arts Companion Standards
Standard: Science Key Ideas and Details	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

Standard: Science Craft and Structure	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 910 texts and topics.
Standard: Science Integration of Knowledge and Ideas	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.7.	Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
New Jersey Student Learning Standards for $21{ }^{\text {st }}$ Century Life and Careers	
Career Ready Practices	
CPI \#	Cumulative Progress Indicator (CPI)
CRP2.	Apply appropriate academic and technical skills.
CRP4.	Communicate clearly and effectively and with reason
CRP8	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11	Use technology to enhance productivity.
New Jersey Student Learning Standards for Technology	
CPI \#	Cumulative Progress Indicator (CPI)
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge.
Instructional Focus	
Unit Enduring Understandings	
- There are patterns of chance numerical outcomes that statisticians use to predict the future	
Unit Essential Questions	
- What are the limitations of using probability to predict future outcomes?	
Objectives	
Students will know: - The basic definition of probability and underlying concept of how probability works Students will be able to: - Construct a valid sample space for a given experiment - Calculate simple probabilities using sample spaces - Calculate probabilities for disjoint events using the addition rule - Calculate probabilities for independent events using the multiplication rule - Use the complement to calculate probabilities - Calculate probabilities for events that are not disjoint using the general addition rule - Calculate conditional probabilities	

- Calculate probabilities for events that are dependent using the general multiplication rule
- Use tree diagrams to organize probability problems with multiple stages

Evidence of Learning		
Assessment	Effective Communicator	
Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of PSAT and NJSLA data.		
Competencies for 21 ${ }^{\text {st }}$ Century Learners		
	Collaborative Team Member	Information Literate Researcher
Globally Aware, Active, \& Responsible Student/Citizen	Self-Directed Learner	
	Innovative \& Practical Problem Solver	
Core Text: Stats in Your World, Pearson, 2012 Suggested Resources:		

Unit 5: From the Data at Hand to the World at Large	
Content Area: Mathematics	
Course \& Grade Level: Statistics, Grade 11 and 12	
Summary and Rationale	
Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn. Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached through the analysis of two-way tables.	
Recommended Pacing	
25 days	
New Jersey Student Learning Standards for Mathematics	
High School Standard IC: Making Inferences \& Justifying Conclusions	
CPI \#	Cumulative Progress Indicator (CPI)
B	Make inferences and justify conclusions from sample surveys, experiments, and observational studies
B 3	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
B 4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
B 5	Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
B 6	Evaluate reports based on data.
	New Jersey Student Learning Standards for English Language Arts Companion Standards
Standard: Science Key Ideas and Details	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.3.	Follow precisely a complex multistep procedure when carrying out experiments, taking

	measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.
Standard: Science Craft and Structure	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.4.	Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
Standard: Science Integration of Knowledge and Ideas	
CPI \#	Cumulative Progress Indicator (CPI)
RST.9-10.7.	Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
New Jersey Student Learning Standards for 21 ${ }^{\text {st }}$ Century Life and Careers	
Career Ready Practices	
CPI \#	Cumulative Progress Indicator (CPI)
CRP2.	Apply appropriate academic and technical skills.
CRP4.	Communicate clearly and effectively and with reason
CRP8	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11	Use technology to enhance productivity.
New Jersey Student Learning Standards for Technology	
CPI \#	Cumulative Progress Indicator (CPI)
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge.
Instructional Focus	
Unit Enduring Understandings	
- Statisticians use surveys, experiments and observational studies to gather data. - There are advantages and disadvantages to each data gathering technique. - Choosing an inappropriate technique for gathering data can undermine the validity of your results.	
Unit Essential Questions	
- What are the differences between surveys, experiments and observational studies? - How does a statistician decide whether a survey, experiment or observational study is appropriate? - What are the ethics involved in performing experiments?	

Objectives

Students will know:

- The definition and limitations of an observational study
- The definition and limitations of an experiment
- How to judge the validity of a survey

Students will be able to:

- Use data from a sample survey to estimate a population mean or proportion;
- Develop a margin of error through the use of simulation models for random sampling.
- Use data from a sample survey to estimate a population mean or proportion;
- Develop a margin of error through the use of simulation models for random sampling.
- Use data from a randomized experiment to compare two treatments;
- Use simulations to decide if differences between parameters are significant.

Evidence of Learning

Assessment

Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of PSAT and NJSLA data.

Competencies for $21^{\text {st }}$ Century Learners

	Collaborative Team Member	Effective Communicator
Globally Aware, Active, \& Responsible Student/Citizen	Information Literate Researcher	
	Innovative \& Practical Problem Solver	Self-Directed Learner

Resources

Core Text: Stats in Your World, Pearson, 2012
Suggested Resources:

