

Dutch Neck Elementary School 92 Village Roadd East West Windsor Township, NJ 08550

Dear Dutch Neck Elementary School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Dutch Neck Elementary School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 48 samples taken, all but 5 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Sample Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom	37.0	Disconnected	N/A	Filter installed	5.46	Outlet is
Faucet		outlet until				Cleared
ID # DNES-1-2-CF-P		further notice,				
		put on filter, and				
		followed up with				

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Sample Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
		flush sample				
Kitchen Kettle Faucet ID# DNES-1-Kit-KT- P	137	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	12.3	New Fixture and Filter Installed	17.2	Fixture permanently removed
1 st Floor Classroom Faucet ID # DNES-1-405-CF- P	25.7	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	36.9	New Fixture and Filter Installed	2.13	Outlet is Cleared
1 st Floor Nurse's Sink ID # DNES-1-Nurse 406-NS-P	1180	Disconnected outlet until further notice, put on filter, and followed up with flush sample	N/A	Filter Installed	7.53	Outlet is Cleared
1 st Floor Nurse's Sink ID # DNES-1-Nurse 409-CF-P	22.7	Disconnected outlet until further notice, put on filter, and followed up with flush sample	N/A	Filter Installed	7.74	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water

distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Maurice Hawk Elementary School 305 Clarksville Rd West Windsor, NJ 08550

Dear Maurice Hawk Elementary School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Maurice Hawk Elementary School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 60 samples taken, all but 3 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom	28.4	Disconnected	N/A	Outlet is	2.56	Outlet is
Faucet		outlet until		Cleared		Cleared
ID # MHES-1-210-CF-		further				
Р		notice, put				
		on filter, and				
		followed up				
		with Flush				

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
		Sample				
1 st Floor Classroom Faucet ID # MHES-1-211-CF- P	273	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	4.01	New Fixture and Filter Installed	46.3	Fixture Permanently Removed
1 st Floor Classroom Faucet ID # MHES-1-223-CF- P	17.6	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	4.42	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Town Center Elementary School 700 Wyndhurst Dr, Plainsboro Township, NJ 08536

Dear Town Center Elementary School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Town Center will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 61 samples taken, all but 3 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
Kitchen	177	Disconnected	N/A	Outlet is	11.9	Outlet is
Kettle Faucet		outlet until		Cleared		Cleared
ID # TCE-1-Kit-KT-P		further notice,				
		put on filter,				
		and followed up				
		with Flush				
		Sample				

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom	16.3	Disconnected	N/A	Outlet is	1.82	Outlet is
Faucet		outlet until		Cleared		Cleared
ID# TCE-1-B126-CF-P		further notice,				
		put on filter,				
		and followed up				
		with Flush				
		Sample				
2 nd Floor Classroom	23.2	Disconnected	N/A	Outlet is	4.54	Outlet is
Faucet		outlet until		Cleared		Cleared
ID # TCE-2-B205-CF-P		further notice,				
		put on filter,				
		and followed up				
		with Flush				
		Sample				

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

J.V.B. Wicoff Elementary School 510 Plainsboro Rd Plainsboro Township, NJ 08536

Dear J.V.B Wicoff Elementary School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, J.V.B. Wicoff Elementary School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 31 samples taken, all but 5 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Library Classroom Faucet ID # JVBW-1-RM 26 Library-CF-P	32.2	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	4.79	New Fixture and Filter Installed	Non-Detect	Outlet is Cleared

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom Faucet ID# JVBW-1-RM 6-CF-P	16.9	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	0.250	Outlet is Cleared	5.22	Outlet is Cleared
1 st Floor Classroom Faucet ID # JVBW-1-RM 4-CF-P	60.7	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	0.460	New Fixture and Filter Installed	4.31	Outlet is Cleared
2 nd Floor Classroom Faucet ID # JVBW-2-RM 21A- CF-P	28.1	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	1.33	N/A	N/A	Fixture Permanently Removed
2 nd Floor Classroom Faucet ID # JVBW-2-RM 20- CF-P	58.4	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	0.032	Outlet is Cleared	1.33	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Millstone River School 75 Grovers Mill Rd Plainsboro Township, NJ 08536

Dear Millstone River School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Millstone River School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 78 samples taken, all but 2 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
Kitchen Kettle Faucet ID # MRS-1-Kit-KT-P	41.7	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	0.470	New Fixture and Filter Installed	7.21	Outlet is Cleared

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom Faucet ID# MRS-1-B110-CF-P	21.3	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	6.43	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Village Elementary School 601 New Village Road West Windsor Township, NJ 08550

Dear Village Elementary School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Village will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 49 samples taken, all tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). No outlets exceeded the 15 15 μ g/l action level.

Health Effects of Lead

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as

a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Community Middle School 95 Grovers Mill Rd Plainsboro Township, NJ 08536

Dear Community Middle School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Community Middle School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 24 samples taken, all but 6 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the $15 \mu g/l$ for lead, the actual lead level, and what temporary remedial action West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw in µg/l (ppb)	Final Action
1 st Floor Classroom 502	24.1	Disconnected	N/A	New Fixture	5.62	Outlet is
Home Economics Faucet		outlet until		and Filter		Cleared
#3		further notice,		installed		
ID # CMS-1-502-EC3-P		put on filter, and				

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw in µg/l (ppb)	Final Action
		followed up with flush sample				
1 st Floor Classroom 502 Home Economics Faucet #4 ID# CMS-1-502-EC4-P	106	Disconnected outlet until further notice, put on filter, and followed up with flush sample	N/A	New Fixture and Filter installed	2.37	Outlet is Cleared
1 st Floor Classroom 401 Sprayer ID# CMS-1-401-SP-P	78.1	Disconnected outlet until further notice, put on filter, and followed up with flush sample	1.01	New Fixture and Filter installed	111	Fixture permanently removed
1 st Floor Classroom 315 Faucet ID# CMS-1-315-CF-P	113	Disconnected outlet until further notice, put on filter, and followed up with flush sample	10.8	New Fixture and Filter installed	2.86	Outlet is Cleared
1 st Floor Classroom 314 Faucet ID# CMS-1-314-CF-P	108	Disconnected outlet until further notice, put on filter, and followed up with flush sample	N/A	New Fixture and Filter installed	12.7	Outlet is Cleared
1 st Floor Classroom 302 Sprayer ID# CMS-1-302-SP-P	55.3	Disconnected outlet until further notice, put on filter, and followed up with flush sample	N/A	N/A	N/A	Fixture permanently removed

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney

problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

Grover Middle School 10 Southfield Road West Windsor Township, NJ 08550

Dear Grover Middle School Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, Grover Middle School will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 66 samples taken, all but 3 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom	24.3	Disconnected	27.4	Failed; Outlet	Non-Detect	Outlet is
E133 Faucet		outlet until		replaced and		Cleared
ID # GMS-1-E133-CF-		further notice,		filter was put on.		
Р		put on filter,		Followed up with		
		and followed up		Remediation		

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
		with Flush Sample		Sampling		
1 st Floor Classroom B118 Faucet ID# GMS-1-B118-CF- P	59.5	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	616	Failed; Outlet replaced and filter was put on. Followed up with Remediation Sampling	Non-Detect	Outlet is Cleared
2 nd Floor Classroom A232 Faucet ID # GMS-2-A232-CF- P	22.1	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	17.2	Failed; Outlet replaced and filter was put on. Followed up with Remediation Sampling	3.1	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

High School North 90 Grovers Mill Road Plainsboro Township, NJ 08536

Dear High School North Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, High School North will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 34 samples taken, all but 1 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action
Dish Room Food Preparation Sink ID # HSN-1-DishRm-FP-P	27.0	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	5.89	Outlet is Cleared

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,

7/25/2022

High School South 342 Clarksville Road West Windsor, NJ 08550

Dear High School South Community,

Our school system is committed to protecting student, teacher, and staff health. To protect our community and be in compliance with the Department of Education regulations, West Windsor-Plainsboro Regional School District tested our schools' drinking water for lead.

In accordance with the Department of Education regulations, High School South will implement immediate remedial measures for any drinking water outlet with a result greater than the action level of 15 μ g/l (parts per billion [ppb]). This includes turning off the outlet unless it is determined the location must remain on for non-drinking purposes. In these cases, a "DO NOT DRINK – SAFE FOR HANDWASHING ONLY" sign will be posted.

Results of our Testing

Following instructions given in technical guidance developed by the New Jersey Department of Environmental Protection, we completed a plumbing profile for each of the buildings within the West Windsor-Plainsboro Regional School District. Through this effort, we identified and tested all drinking water and food preparation outlets. Of the 23 samples taken, all but 13 tested below the lead action level established by the US Environmental Protection Agency for lead in drinking water (15 μ g/l [ppb]). Once all remediation steps have been taken, no outlets remain that exceed the action limit of 15 μ g/l.

The table below identifies the drinking water outlets that tested above the 15 μ g/l for lead, the actual lead level, and what temporary remedial action the West Windsor-Plainsboro Regional School District has taken to reduce the levels of lead at these locations.

Sample Location	First Draw	Remedial	Flush	Remedial	Remediation	Final Action
	Result in	Action	Draw	Action	Draw Result	
	μg/l (ppb)		Result in		in μg/l (ppb)	
			μg/l (ppb)			

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
Kitchen Kettle #1 ID # HSS-1-KT1-P	28.3	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	6.3	New fixture and filter installed	40.9	Fixture Permanently Removed
Kitchen Kettle #2 ID # HSS-1-KT2-P	112	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	2.63	New fixture and filter installed	3.1	Outlet is Cleared
Kitchen Hand Sink ID # HSS-1-Kitchen- HS-P	529	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	11.7	Outlet is Cleared
Kitchen Food Preparation Sink #1 ID # HSS-1-Kitchen- FP1-P	56.6	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	Non-Detect	Outlet is Cleared
Nurse Bathroom Faucet ID # HSS-1-Nurse-BF-P	26.4	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	6.09	Outlet is Cleared
1 st Floor Classroom 91 Faucet ID # HSS-1-91-CF-P	15.3	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	1.55	Failed; Outlet replaced and filter was put on. Followed up with Remediation Sampling	31.8	Fixture Permanently Removed

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
1 st Floor Classroom 94 Faucet ID # HSS-1-94-CF-P	20.1	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	1.33	Failed; Outlet replaced and filter was put on. Followed up with Remediation Sampling	1.89	Outlet is Cleared
1 st Floor Classroom 95 Faucet ID # HSS-1-95-CF-P	46.3	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	7.60	Outlet is Cleared
Trainer Hose Bib #1 ID # HSS-Trainer-HB1- P	63.0	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is now labeled "Not for Consumption"	23.2	Outlet is now labeled "Not for Consumption"
Trainer Hose Bib #2 ID # HSS-Trainer-HB2- P	95.1	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Failed; Outlet is now labeled "Hand Wash Only"	28.1	Outlet is now labeled "Hand Wash Only"
Concession Stand Faucet ID # HSS-Concession- CF-P	34.2	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	4.26	New Fixture and Filter Installed	6.48	Outlet is Cleared
2 nd Floor Science Work Room 201 Faucet ID # HSS-2- ScienceWrkRm-P-201- TL-P	47.8	Disconnected outlet until further notice, put on filter, and followed up with Flush Sample	N/A	Outlet is Cleared	10.5	Outlet is Cleared

Sample Location	First Draw Result in µg/l (ppb)	Remedial Action	Flush Draw Result in µg/l (ppb)	Remedial Action	Remediation Draw Result in µg/l (ppb)	Final Action
2 nd Floor Science Work Room 202 Faucet	705	Disconnected outlet until	N/A	Outlet is Cleared	11.0	Outlet is Cleared
ID # HSS-2-		further notice,				
SciencePrep-P-202-TL- P		put on filter, and followed				
		up with Flush				
		Sample				

High levels of lead in drinking water can cause health problems. Lead is most dangerous for pregnant women, infants, and children under 6 years of age. It can cause damage to the brain and kidneys, and can interfere with the production of red blood cells that carry oxygen to all parts of your body. Exposure to high levels of lead during pregnancy contributes to low birth weight and developmental delays in infants. In young children, lead exposure can lower IQ levels, affect hearing, reduce attention span, and hurt school performance. At *very* high levels, lead can even cause brain damage. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How Lead Enters our Water

Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like groundwater, rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and in building plumbing. These materials include lead-based solder used to join copper pipe, brass, and chrome-plated brass faucets. In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials. However, even the lead in plumbing materials meeting these new requirements is subject to corrosion. When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into the drinking water. This means the first water drawn from the tap in the morning *may* contain fairly high levels of lead.

Lead in Drinking Water

Lead in drinking water, although rarely the sole cause of lead poisoning can significantly increase a person's total lead exposure, particularly the exposure of children under the age of 6. EPA estimates that drinking water can make up 20% or more of a person's total exposure to lead.

For More Information

A copy of the test results is available in our central office for inspection by the public, including students, teachers, other school personnel, and parents, and can be viewed between the hours of 8:30 a.m. and 4:00 p.m. and are also available on our website at https://www.west-windsor-plainsboro.k12.nj.us/h_o_m_e. For more information about water quality in our schools, contact Thomas Daly, Director Buildings & Grounds, 609-716-5340.

For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at **www.epa.gov/lead**, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

If you are concerned about lead exposure at this facility or in your home, you may want to ask your health care providers about testing children to determine levels of lead in their blood.

Sincerely,