

West Windsor-Plainsboro Regional School District AP CALCULUS AB July 2022

Unit 1: Limits & Continuity

Content Area: Mathematics

11 dave

Course & Grade Level: AP Calculus AB, grades 11 and 12

Summary and Rationale

Limits are the foundational concept of calculus. This unit features a multi-representational approach to calculus, with limits, continuity, and their connected theorems expressed graphically, numerically, analytically, and verbally. Exploring connections among these representations builds understanding of how calculus applies limits to develop important ideas, definitions, formulas, and theorems. A sustained emphasis on clear communication of methods, reasoning, justifications, and conclusions is essential for 21st century learners.

Recommended Pacing

11 ddy5		
New Jersey Student Learning Standards for		
Standards for Mathematical Practice		
CPI #	Cumulative Progress Indicator (CPI)	
1	Make sense of problems and persevere in solving them.	
2	Reason abstractly and quantitatively.	
3	Construct viable arguments and critique the reasoning of others.	
4	Model with mathematics.	
5	Use appropriate tools strategically.	
6	Attend to precision.	
7	Look for and make use of structure.	
8	Look for and express regularity in repeated reasoning.	
	New Jersey Student Learning Standards for English Language Arts	
	Companion Standards	
Standard: Sci	ence Key Ideas and Details	
CPI #	Cumulative Progress Indicator (CPI)	
RST.9-10.3	Follow precisely a complex multistep procedure when carrying out experiments, taking	
	measurements, or performing technical tasks, attending to special cases or exceptions defined in the	
	text. Follow precisely a multistep procedure when carrying out experiments, taking measurements,	
	or performing technical tasks.	
Standard: So	ience Craft and Structure	
CPI #	Cumulative Progress Indicator (CPI)	
	Determine the meaning of symbols, key terms, and other domain-specific words and	
RST.9-10.4	phrases as they are used in a specific scientific or technical context relevant to grades 10-11	
	texts and topics.	
N	ew Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills	
CPI #	Cumulative Progress Indicator (CPI)	
9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.	
9.4.12.CT.2	Explain the potential benefits of collaborating to enhance critical thinking and problem	
	solving.	
9.4.12.TL.1	Assess digital tools based on features such as accessibility options, capacities, and utility for	
	accomplishing a specified task.	
9.4.12.TL.3	Analyze the effectiveness of the process and quality of collaborative environments.	

9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.		
New Jersey Student Learning Standards for Computer Science and Design Thinking			
CPI #	Cumulative Progress Indicator (CPI)		
8.2.12.NT.1	Explain how different groups can contribute to the overall design of a product.		
	Instructional Focus		
Unit Enduring	g Understandings		
Calcu	lus is the study of the rate of change of values and allows us to find length, area, and volume.		
A lim	A limit is the foundation of both differential and integral calculus.		
 Continuity is defined by limits and is a prerequisite for many applications in calculus. 			
Unit Essentia	I Questions		
• Why	are limits the foundation of calculus and how are they useful?		
• How	do limits relate to various features of a function and its graph?		
How	is continuity used to identify the existence of important values of a function?		
Content Und	erstandings		
 A lim 	it at a value is defined when the left and right side limits are equal.		
 The I 	imit of a function is the value the output of that function approaches as the input approaches some		
const	ant.		
A fur	ction is continuous when the function value is defined, the limit exists, and the function value equals		
the li	mit value.		
• The s	lope of a tangent line at a point is defined as a limit.		
 The c 	ifference between average rate of change (over a time interval) and instantaneous rate of change (at a		
single	e moment).		
Content Que	stions		
How	is a limit defined?		
How	is continuity defined?		
How	is the slope of a tangent line defined?		
Objectives			
We are learn	ing to/that:		
• The i	nformal definition of a limit, definition of continuous.		
Trans	late among verbal, visual, and algebraic definitions of limits and continuity.		
Evalu	ate limits using the squeeze theorem.		
Apply	the intermediate value theorem.		
Estim	ate the slope of a line tangent to a given point.		
Estim	ate the average velocity and instantaneous velocity at a given time.		
Detei	mine the limit of a function by applying the limit laws.		
• Evalu	ate infinits approaching infinity.		
	the definition of continuity		
	late slones of tangents, velocities, and other rates of change by applying the learned techniques to		
comr	ate slopes of tangents, velocities, and other rates of change by applying the learned techniques to aute limits		
Evidence of Learning			
Assessment			
Assessment plan may include teacher designed formative and summative assessments, a district common			
assessment, analysis of standardized tests and NJSLA data.			
	Resources		
Core Text: Ca	lculus for the AP course, 3 rd edition, by Sullivan, Miranda, publisher bedford, freeman and worth (bfw).		

copyright 2020

West Windsor-Plainsboro RSD Page 4 of 10

Unit 2: Differentiation

Content Area: Mathematics

Course & Grade Level: AP Calculus AB, grades 11 and 12

Summary and Rationale

Differentiation is the mathematical study of change and is a fundamental operation of calculus. This unit features a multi-representational approach to calculus, with limits, derivatives, and their associated theorems expressed graphically, numerically, analytically, and verbally. Exploring connections among these representations builds understanding to describe rates of change of one variable with respect to another or use definite integrals to describe the net change in one variable over an interval of another. This allows students to understand change in a variety of contexts. A sustained emphasis on clear communication of methods, reasoning, justifications, and conclusions is essential for 21st century learners.

Recommended Pacing

38 days			
New Jersey Student Learning Standards for			
Standards for Mathematical Practice			
CPI #	Cumulative Progress Indicator (CPI)		
1	Make sense of problems and persevere in solving them.		
2	Reason abstractly and quantitatively.		
3	Construct viable arguments and critique the reasoning of others.		
4	Model with mathematics.		
5	Use appropriate tools strategically.		
6	Attend to precision.		
7	Look for and make use of structure.		
8	Look for and express regularity in repeated reasoning.		
	New Jersey Student Learning Standards for English Language Arts		
	Companion Standards		
Standard: Sci	ence Key Ideas and Details		
CPI #	Cumulative Progress Indicator (CPI)		
RST.9-10.3	Follow precisely a complex multistep procedure when carrying out experiments, taking		
	measurements, or performing technical tasks, attending to special cases or exceptions defined in the		
	text. Follow precisely a multistep procedure when carrying out experiments, taking measurements,		
Standard Sc	or performing technical tasks.		
	Cumulative Progress Indicator (CPI)		
DCT 0 10 4	Determine the meaning of symbols, key terms, and other domain-specific words and		
KS1.9-10.4	privates as they are used in a specific scientific of technical context relevant to grades 10-11 texts and tonics		
N	lew Jersey Student Learning Standards for Career Readiness. Life Literacies and Key Skills		
CPI #	Cumulative Progress Indicator (CPI)		
9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.		
9.4.12.CT.2	Explain the potential benefits of collaborating to enhance critical thinking and problem		
5.112.01.2	solving.		
9.4.12.TL.1	Assess digital tools based on features such as accessibility options, capacities, and utility for		
	accomplishing a specified task.		

9.4.12.TL.3	Analyze the effectiveness of the process and quality of collaborative environments.	
9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.	
New Jersey Student Learning Standards for Computer Science and Design Thinking		
CPI #	Cumulative Progress Indicator (CPI)	
8.2.12.NT.1	Explain how different groups can contribute to the overall design of a product.	
	Interdisciplinary Standards Science	
HS.PS2	Motion and Instability: Forces and Interactions	
Science exam	ples: (1) Relate the units of acceleration (m/s2) to the fact that acceleration refers to a change in	
velocity over	time. (2) Reconstruct the units of the universal gravitational constant G by reference to the formula F =	
Gm1m2/r 2 ,	instead of having to memorize the units. (2) Attend to units properly when using formulas such as	
momentum =	mass times velocity, etc. (3) Carefully format data displays and graphs, attending to origin, scale,	
units, and oth	ner essential items. NGSS Appendix L, pg. 28	
	Instructional Focus	
Unit Enduring	g Understandings	
Calcu	lus is the study of the rate of change of values and allows us to find length, area, and volume.	
• A der	ivative is the instantaneous rate of change of a function and can be used in many real-world	
appili Doriv	cations across different fields.	
Deriv	atives can be used to identify key reactives of a function and its graph.	
repre	active concepts help explain phenomena in the physical world by examining them in multiple esentations	
Unit Essentia	l Questions	
How	is an instantaneous rate of change useful?	
How	can a derivative be interpreted?	
• How	can we use derivatives to understand the behavior of functions?	
Content Und	erstandings	
• A der	ivative is a function that represents the instantaneous rate of change of another function.	
• Find	a derivative of multiple types of functions (polynomial, rational, trigonometric, radical, exponential,	
logar	ithmic, and inverse).	
 Use 	differentiation techniques (product, quotient, and chain rules) in evaluating the derivative of	
comp	positions of functions.	
Find	and interpret higher order derivatives for analysis and curve sketching (including max and min).	
When	n to apply and interpret the Mean Value Theorem.	
 Using 	g derivatives to identify and interpret key features of a graph or function.	
 Solve Eind t 	the antiderivative of a function and differentials	
• Thiu		
Content Que	stions	
What	: Is a derivative and how do we find one?	
	do we interpret and solve applications of differentiation, specifically related rate and entimization	
• HOW	and we interpret and solve applications of unterentiation, specifically related rate and optimization	
How	do we find and interpret an antiderivative and a differential?	
What	is the difference between average and instantaneous rates of change?	
Objectives		
We are learning to/that:		
• Annly	the definition of derivative as a function.	
• Inter	pret the derivative as a rate of change and find the average & instantaneous velocity.	

• Apply the power rule, product rule, quotient rule, and chain rule to evaluate derivatives of functions.

- Differentiate trigonometric functions.
- Apply the method of implicit differentiation.
- Evaluate the derivative of an inverse function at a given point.
- Find the derivative of an exponential function.
- Differentiate logarithmic functions.
- Apply the method of logarithmic differentiation.
- Evaluate derivatives of inverse trigonometric functions.
- Evaluate higher order derivatives.
- Solve related rate applications.
- Find the linearization of a function and use it to approximate values.
- Apply derivatives to find the maximum/minimum values of a function.
- Apply derivatives to find the points of inflection and intervals of concavity of a function.
- Apply L'Hospital's rule in evaluating limits.
- Apply the Mean Value Theorem.
- Analyze and make the connections between a function and its derivative.
- Sketch the curve of a function by applying the first and second derivative tests.
- Connect position, velocity, and acceleration using derivatives for 1-dimensional motion.
- Solve real world optimization problems.
- Determine the antiderivative of a function.

Evidence of Learning

Assessment

Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of standardized tests and NJSLA data.

Resources

Core Text: Calculus for the AP course, 3rd edition, by Sullivan, Miranda, publisher bedford, freeman and worth (bfw), copyright 2020

Unit 3: Integration

Content Area: Mathematics

Course & Grade Level: AP Calculus AB, grades 11 and 12

Summary and Rationale

Along with limits and differentiation, integration is a fundamental operation of calculus. This unit features a multi-representational approach to calculus, with integrals and their related theorems expressed graphically, numerically, analytically, and verbally. Exploring connections among these representations builds understanding to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. A sustained emphasis on clear communication of methods, reasoning, justifications, and conclusions is essential for 21st century learners.

	Recommended Pacing		
29-31 days	29-31 days		
New Jersey Student Learning Standards for			
Standards for Mathematical Practice			
CPI #	Cumulative Progress Indicator (CPI)		
1	Make sense of problems and persevere in solving them.		
2	Reason abstractly and quantitatively.		
3	Construct viable arguments and critique the reasoning of others.		
4	Model with mathematics.		
5	Use appropriate tools strategically.		
6	Attend to precision.		
7	Look for and make use of structure.		
8	Look for and express regularity in repeated reasoning.		
	New Jersey Student Learning Standards for English Language Arts		
	Companion Standards		
Standard: Sc	ience Key Ideas and Details		
CPI #	Cumulative Progress Indicator (CPI)		
RST.9-10.3	Follow precisely a complex multistep procedure when carrying out experiments, taking		
	measurements, or performing technical tasks, attending to special cases or exceptions defined in the		
	text. Follow precisely a multistep procedure when carrying out experiments, taking measurements,		
Standard: Sc	cience Craft and Structure		
	Cumulative Progress Indicator (CPI)		
	Determine the meaning of symbols, key terms, and other domain specific words and		
RST 9-10 4	phrases as they are used in a specific scientific or technical context relevant to grades 10-11		
	texts and topics.		
Π	New Jersey Student Learning Standards for Career Readiness, Life Literacies and Key Skills		
CPI #	Cumulative Progress Indicator (CPI)		
9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.		
9.4.12.CT.2	Explain the potential benefits of collaborating to enhance critical thinking and problem		
	solving.		
9.4.12.TL.1	Assess digital tools based on features such as accessibility options, capacities, and utility for		
	accomplishing a specified task.		

9.4.12.TL.3	Analyze the effectiveness of the process and quality of collaborative environments.		
9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas.		
	New Jersey Student Learning Standards for Computer Science and Design Thinking		
CPI #	Cumulative Progress Indicator (CPI)		
8.2.12.NT.1	Explain how different groups can contribute to the overall design of a product.		
	Instructional Focus		
Unit Endurin	g Understandings		
Calcu	lus is the study of the rate of change of values and allows us to find length, area, and volume.		
 An integral can be used in many real-world applications across different fields. 			
 Integ 	 Integral concepts help explain phenomena in the physical world by examining them in multiple 		
repre	sentations.		
• Integ			
	are estimation techniques and limits used to develop the idea of an infinite sum?		
 How 	can an integral be interpreted?		
 How 	are derivatives and integrals related?		
How	can we use integrals to understand the behavior of functions?		
Contont Und	orstandings		
● A def	inite integral allows us to find the area under a curve, and can be interpreted as total and pet change		
ofay	alue.		
 What 	the Fundamental Theorem of Calculus is and how it connects derivatives and integrals.		
• The c	lifference between definite and indefinite integrals.		
• The i	mportance of the constant of integration and what it represents.		
 Differ 	rential equations and their graphical representations.		
 Geon 	netric applications of integrals in finding area and volume.		
Content Que	stions		
 Why 	are rectangles used to approximate the area in the cartesian plane?		
 What 	methods can we use to integrate different types of functions?		
 What 	is the Fundamental Theorem of Calculus?		
• How	are derivatives and integrals connected?		
How	do we use integration to find total and net change?		
How	do we use integration to find volume?		
Objectives			
We are learn	ing to/that:		
• Unde	rstand the Fundamental Theorem of Calculus, the Total Change Theorem and the term integral.		
Appr	oximate the area under a curve using Riemann sums or Trapezoidal sums.		
 Approvide 	oximate the total distance traveled by a particle moving along a line.		
	the Eurodemental Theorem of Calculus in evaluating definite and indefinite integrals		
 Solve 	applications involving the Total Change Theorem.		
 Integ 	rate using direct antiderivatives.		
 Evalu 	ate definite and indefinite integrals by applying the substitution rule.		
 Integ 	rate using completing the square and long division.		
• Deter	mine the average value of a function.		
• Find	the area of a region bounded by two curves.		
• Find	the volume of a solid obtained by a rotation, using the disk method.		
 Find 	the volume of a solid obtained by a rotation, using the washer method.		

Find the volume of a solid with known cross-sections.

- Solve application problems involving area and volume.
- Construct a slope field.
- Sketch a solution curve using a slope field.
- Solve a differential equation by using separation of variables.
- Analyze exponential growth and decay models.
- Match equations and differential equations with slope fields and solution curves.

Evidence of Learning

Assessment

Assessment plan may include teacher designed formative and summative assessments, a district common assessment, analysis of standardized tests and NJSLA data.

Resources

Core Text: Calculus for the AP course, 3rd edition, by Sullivan, Miranda, publisher bedford, freeman and worth (bfw), copyright 2020